首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) particulate organic carbon (POC) concentration products for the South China Sea (SCS) were compared with in situ data collected from October 2007 to December 2013. Spectral remote-sensing reflectance (Rrs,λ) was also measured to help understand POC algorithm performance. A strict comparison of the satellite-derived POC and in situ measurements showed that MERIS, MODIS, and SeaWiFS underestimated in situ values by 29.1, 11.7, and 31.5%, respectively. Similar results were obtained with a relaxed matching criterion. Through analysis of the causes of product uncertainty, the results suggested that satellite retrieval of Rrs,λ and the global POC algorithm both have an impact on inversion accuracy. However, the formulation of the POC algorithm seems to be more critical. When a regional algorithm was developed to obtain satellite-derived POC, both the strict and relaxed comparison results showed significant improvement, but for coastal waters, both algorithms had larger errors. Other factors affecting the comparison are also discussed.  相似文献   

2.
Bio-optical algorithms for remote estimation of chlorophyll-a concentration (Chl) in case-1 waters exploit the upwelling radiation in the blue and green spectral regions. In turbid productive waters other constituents, that vary independently of Chl, absorb and scatter light in these spectral regions. As a consequence, the accurate estimation of Chl in turbid productive waters has so far not been feasible from satellite sensors. The main purpose of this study was to evaluate the extent to which near-infrared (NIR) to red reflectance ratios could be applied to the Sea Wide Field-of-View Sensor (SeaWiFS) and the Moderate Imaging Spectrometer (MODIS) to estimate Chl in productive turbid waters. To achieve this objective, remote-sensing reflectance spectra and relevant water constituents were collected in 251 stations over lakes and reservoirs with a wide variability in optical parameters (i.e. 4 ≤ Chl ≤ 240 mg m− 3; 18 ≤ Secchi disk depth ≤ 308 cm). SeaWiFS and MODIS NIR and red reflectances were simulated by using the in-situ hyperspectral data. The proposed algorithms predicted Chl with a relative random uncertainty of approximately 28% (average bias between − 1% and − 4%). The effects of reflectance uncertainties on the predicted Chl were also analyzed. It was found that, for realistic ranges of Rrs uncertainties, Chl could be estimated with a precision better than 40% and an accuracy better than ± 35%. These findings imply that, provided that an atmospheric correction scheme specific for the red-NIR spectral region is available, the extensive database of SeaWiFS and MODIS images could be used to quantitatively monitor Chl in turbid productive waters.  相似文献   

3.
A multi-spectral classification and quantification technique is developed for estimating chlorophyll a concentrations, Chl, in shallow oceanic waters where light reflected by the bottom can contribute significantly to the above-water remote-sensing reflectance spectra, Rrs(λ). Classification criteria for determining bottom reflectance contributions for shipboard Rrs(λ) data from the west Florida shelf and Bahamian waters (1998-2001; n = 451) were established using the relationship between Rrs(412)/Rrs(670) and the spectral curvature about 555 nm, [Rrs(412) ? Rrs(670)]/Rrs(555)2. Chlorophyll concentrations for data classified as “optically deep” and “optically shallow” were derived separately using best-fit cubic polynomial functions developed from the band-ratios Rrs(490)/Rrs(555) and Rrs(412)/Rrs(670), respectively. Concentrations for transitional data were calculated from weighted averages of the two derived values. The root-mean-square error (RMSElog10) calculated for the entire data set using the new technique was 14% lower than the lowest error derived using the best individual band-ratio. The standard blue-to-green, band-ratio algorithm yields a 26% higher RMSElog10 than that calculated using the new method. This study demonstrates the potential of quantifying chlorophyll a concentrations more accurately from multi-spectral satellite ocean color data in oceanic regions containing optically shallow waters.  相似文献   

4.
We examined the within-day variability in seawater optical properties and biogeochemical constituents for a high-latitude location in the Ross Sea, Antarctica, during development of the annual spring phytoplankton bloom. Measurements of particulate organic carbon concentration (POC), chlorophyll-a concentration (Chl), and particle size distribution were conducted at 4–6 hour intervals in parallel with determinations of the spectral absorption and attenuation coefficients of particles, and the spectral remote-sensing reflectance of the surface ocean (Rrs). Surface POC and Chl exhibited more than a twofold variation throughout the day in the continuous presence of natural light. A minimum occurred near local noon coinciding with peak solar irradiance, a maximum in the evening, and a subsequent decrease throughout the night-time hours. These patterns were accompanied by large changes in the magnitude and spectral shape of Rrs, including the blue-to-green spectral band ratios used in ocean colour algorithms for estimating POC and Chl. The variability in Rrs could not be explained by changes in solar zenith angle, but was consistent with observations of within-day variations in spectral absorption and scattering by particles which were influenced by changes in the particle concentration and size distribution. The accuracy of an empirical ocean colour algorithm for estimating POC from Rrs was unaffected by within-day variability, implying that short-term variations in surface POC can be potentially monitored by multiple within-day measurements of Rrs, through means of in situ and remote sensing observations if available. Our findings also suggest that within-day changes in POC can be significant compared with the variability observed on meso-scale spatial scales, potentially confounding the interpretation of remote-sensing data obtained from temporal and spatial compositing of images measured at different times within a single day.  相似文献   

5.
Accurate assessment of phytoplankton chlorophyll a (Chla) concentration in turbid waters by means of remote sensing is challenging due to optically complexity and significant variability of case 2 waters, especially in inland waters with multiple optical types. In this study, a water optical classification algorithm is developed, and two semi-analytical algorithms (three- and four-band algorithm) for estimating Chla are calibrated and validated using four independent datasets collected from Taihu Lake, Chaohu Lake, and Three Gorges Reservoir. The optical classification algorithm is developed using the dataset collected in Taihu Lake from 2006 to 2009. This dataset is also used to calibrate the three- and four-band Chla estimation algorithms. The optical classification technique uses remote sensing reflectance at three bands: Rrs(G), Rrs(650), and Rrs(NIR), where G indicates the location of reflectance peak in the green region (around 560 nm), and NIR is the location of reflectance peak in the near-infrared region (around 700 nm). Optimal reference wavelengths of the three- and four-band algorithm are located through model tuning and accuracy optimization. The three- and four-band algorithm accuracy is further evaluated using other three independent datasets. The improvement of optical classification in Chla estimation is revealed by comparing the performance of the two algorithms for non-classified and classified waters.Using the slopes of the three reflectance bands, the 138 reflectance spectra samples in the calibration dataset are classified into three classes, each with a specific spectral shape character. The three- and four-band algorithm performs well for both non-classified and classified waters in estimating Chla. For non-classified waters, strong relationships are yielded between measured and predicted Chla, but the performance of the two algorithms is not satisfactory in low Chla conditions, especially for samples with Chla below 30 mg m− 3. For classified waters, the class-specific algorithms perform better than for non-classified waters. Class-specific algorithms reduce considerable mean relative error from algorithms for non-classified waters in Chla predicting. Optical classification makes that there is no need to adjust the optimal position to estimate Chla for other waters using the class-specific algorithms. The findings in this study demonstrate that optical classification can greatly improve the accuracy of Chla estimation in optically complex waters.  相似文献   

6.
Optical measurements including remote sensing provide a potential tool for the identification of dominant phytoplankton groups and for monitoring spatial and temporal changes in biodiversity in the upper ocean. We examine the application of an unsupervised hierarchical cluster analysis to phytoplankton pigment data and spectra of the absorption coefficient and remote-sensing reflectance with the aim of discriminating different phytoplankton assemblages in open ocean environments under non-bloom conditions. This technique is applied to an optical and phytoplankton pigment data set collected at several stations within the eastern Atlantic Ocean, where the surface total chlorophyll-a concentration (TChla) ranged from 0.11 to 0.62 mg m− 3. Stations were selected on the basis of significant differences in the ratios of the two most dominant accessory pigments relative to TChla, as derived from High Performance Liquid Chromatography (HPLC) analysis. The performance of cluster analysis applied to absorption and remote-sensing spectra is evaluated by comparisons with the cluster partitioning of the corresponding HPLC pigment data, in which the pigment-based clusters serve as a reference for identifying different phytoplankton assemblages. Two indices, cophenetic and Rand, are utilized in these comparisons to quantify the degree of similarity between pigment-based and optical-based clusters. The use of spectral derivative analysis for the optical data was also evaluated, and sensitivity tests were conducted to determine the influence of parameters used in these calculations (spectral range, smoothing filter size, and band separation). The results of our analyses indicate that the second derivative calculated from hyperspectral (1 nm resolution) data of the phytoplankton absorption coefficient, aph(λ), and remote-sensing reflectance, Rrs(λ), provide better discrimination of phytoplankton pigment assemblages than traditional multispectral band-ratios or ordinary (non-differentiated) hyperspectral data of absorption and remote-sensing reflectance. The most useful spectral region for this discrimination extends generally from wavelengths of about 425-435 nm to wavelengths within the 495-540 nm range, although in the case of phytoplankton absorption data a broader spectral region can also provide satisfactory results.  相似文献   

7.
The growth of mass populations of toxin-producing cyanobacteria is a serious concern for the ecological status of inland waterbodies and for human and animal health. In this study we examined the performance of four semi-analytical algorithms for the retrieval of chlorophyll a (Chl a) and phycocyanin (C-PC) from data acquired by the Compact Airborne Spectrographic Imager-2 (CASI-2) and the Airborne Imaging Spectrometer for Applications (AISA) Eagle sensor. The retrieval accuracies of the semi-analytical models were compared to those returned by optimally calibrated empirical band-ratio algorithms. The best-performing algorithm for the retrieval of Chl a was an empirical band-ratio model based on a quadratic function of the ratio of reflectance at 710 and 670 nm (R2 = 0.832; RMSE = 29.8%). However, this model only provided a marginally better retrieval than the best semi-analytical algorithm. The best-performing model for the retrieval of C-PC was a semi-analytical nested band-ratio model (R2 = 0.984; RMSE = 3.98 mg m3). The concentrations of C-PC retrieved using the semi-analytical model were correlated with cyanobacterial cell numbers (R2 = 0.380) and the particulate and total (particulate plus dissolved) pools of microcystins (R2 = 0.858 and 0.896 respectively). Importantly, both the empirical and semi-analytical algorithms were able to retrieve the concentration of C-PC at cyanobacterial cell concentrations below current warning thresholds for cyanobacteria in waterbodies. This demonstrates the potential of remote sensing to contribute to early-warning detection and monitoring of cyanobacterial blooms for human health protection at regional and global scales.  相似文献   

8.
Empirical airborne remote-sensing relationships were examined to estimate chlorophyll a concentration in the first optical depth (chlFOD) of coastal waters of Afgonak/Kodiak Islands during July-August 2002. Band-ratio and spectral-curvature models were tested using satellite remote-sensing reflectance (Rrs(λ)) measurements. Additional shipboard and airborne Rrs(λ) data were also analysed to evaluate consistency of proposed chlFOD-Rrs(λ) relationships. Validation of chlorophyll algorithms was performed using data collected in the northern-part of the Gulf of Alaska and Bering Sea during 1996, 2002, and 2003 cruises. Likewise, oceanographic conditions during the surveys were typified to interpret variability of chlFOD fields. The SeaWiFS band-ratio algorithm OC2d was the most sensitive Rrs combination (Rrs(509)/Rrs(553)) to detect chlFOD variability. Conversely, OC2a (Rrs(412)/Rrs(553)) had the lowest performance to derive chlFOD values. No valid statistical regressions were established for spectral-curvature relationships in the blue spectrum (< 500 nm). Fertile waters (> 5 mg m− 3) were preferentially located over shallow banks (∼50 m) and at the entrance of the bays. The approach used in this study to derive chlFOD values could be universal for Alaskan coastal waters. However, chlFOD-Rrs(λ) relationships must be calibrated locally for a given season.  相似文献   

9.
We present a simple algorithm to identify Karenia brevis blooms in the Gulf of Mexico along the west coast of Florida in satellite imagery. It is based on an empirical analysis of collocated matchups of satellite and in situ measurements. The results of this Empirical Approach is compared to those of a Bio-optical Technique - taken from the published literature - and the Operational Method currently implemented by the NOAA Harmful Algal Bloom Forecasting System for K. brevis blooms. These three algorithms are evaluated using a multi-year MODIS data set (from July, 2002 to October, 2006) and a long-term in situ database. Matchup pairs, consisting of remotely-sensed ocean color parameters and near-coincident field measurements of K. brevis concentration, are used to assess the accuracy of the algorithms. Fair evaluation of the algorithms was only possible in the central west Florida shelf (i.e. between 25.75°N and 28.25°N) during the boreal Summer and Fall months (i.e. July to December) due to the availability of valid cloud-free matchups. Even though the predictive values of the three algorithms are similar, the statistical measure of success in red tide identification (defined as cell counts in excess of 1.5 × 104 cells L−1) varied considerably (sensitivity—Empirical: 86%; Bio-optical: 77%; Operational: 26%), as did their effectiveness in identifying non-bloom cases (specificity—Empirical: 53%; Bio-optical: 65%; Operational: 84%). As the Operational Method had an elevated frequency of false-negative cases (i.e. presented low accuracy in detecting known red tides), and because of the considerable overlap between the optical characteristics of the red tide and non-bloom population, only the other two algorithms underwent a procedure for further inspecting possible detection improvements. Both optimized versions of the Empirical and Bio-optical algorithms performed similarly, being equally specific and sensitive (~ 70% for both) and showing low levels of uncertainties (i.e. few cases of false-negatives and false-positives: ~ 30%)—improved positive predictive values (~ 60%) were also observed along with good negative predictive values (~ 80%).  相似文献   

10.
During spring and summer 2004, intensive field bio-optical campaigns were conducted in the eastern English Channel and southern North Sea to assess the mechanisms regulating the ocean color variability in a complex coastal environment. The bio-optical properties of the sampled waters span a wide range of variability, due to the various biogeochemical and physical processes occurring in this area. In-water hyperspectral remote sensing reflectances (Rrs) were acquired simultaneously with measurements of optically significant parameters at 93 stations. An empirical orthogonal function (EOF) analysis indicates that 74% of the total variance of Rrs is partly explained by particulate backscattering (bbp), while particulate and dissolved absorption only explain 15% of the ocean color variability. These results confirm, for the first time from in situ backscattering measurements, previous studies performed in other coastal environments. Whereas the amplitude factors of the first EOF mode are well correlated (r = 0.75) with the particulate backscattering coefficient (bbp), the highest correlation (r = 0.83) is found with the particulate backscattering ratio (bbp/bp). This result highlights the fundamental role of the nature of the bulk particulate assemblage in the ocean color variability.An unsupervised hierarchical cluster analysis applied to our data set of normalized Rrs spectra, leads to five spectrally distinct classes. We show that the class-specific mean Rrs spectra significantly differ from one another by their bio-optical properties. Three classes particularly stand out: one class corresponds to a Phaeocystis globosa bloom situation, whereas the two others are associated with water masses dominated by mineral and non-living particles, respectively. Among the different bio-optical parameters, the particulate backscattering ratio, the chlorophyll concentration, and the particulate organic carbon to chlorophyll ratio, are the most class-specific ones. These different results are very encouraging for the inversion of bio-optical parameters from class-specific algorithms.  相似文献   

11.
Time series of satellite sensor-derived data can be used in the light use efficiency (LUE) model for gross primary productivity (GPP). The LUE model and a closely related linear regression model were studied at an ombrotrophic peatland in southern Sweden. Eddy covariance and chamber GPP, incoming and reflected photosynthetic photon flux density (PPFD), field-measured spectral reflectance, and data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used in this study. The chamber and spectral reflectance measurements were made on four experimental treatments: unfertilized control (Ctrl), nitrogen fertilized (N), phosphorus fertilized (P), and nitrogen plus phosphorus fertilized (NP). For Ctrl, a strong linear relationship was found between GPP and the photosynthetically active radiation absorbed by vegetation (APAR) (R2 = 0.90). The slope coefficient (εs, where s stands for “slope”) for the linear relationship between seasonal time series of GPP and the product of the normalized difference vegetation index (NDVI) and PPFD was used as a proxy for the light use efficiency factor (ε). There were differences in εs depending on the treatments with a significant effect for N compared to Ctrl (ANOVA: p = 0.042, Tukey's: p ≤ 0.05). Also, εs was linearly related to the cover degree of vascular plants (R2 = 0.66). As a sensitivity test, the regression coefficients (εs and intercept) for each treatment were used to model time series of 16-day GPP from the product of MODIS NDVI and PPFD. Seasonal averages of GPP were calculated for 2005, 2006, and 2007, which resulted in up to 19% higher average GPP for the fertilization treatments compared to Ctrl. The main conclusion is that the LUE model and the regression model can be applied in peatlands but also that temporal and spatial changes in ε or the regression coefficients should be considered.  相似文献   

12.
An outdoor tank experiment is carried out to analyse the interrelationships between remote-sensing reflectance and sediment characteristics in the highly turbid waters of the Yangtze River and the Yellow River estuaries. The results show that the sensitivity of remote-sensing reflectance to water turbidity is inversely related to suspended sediment concentration (SSC). SSC estimation in the highly turbid waters (SSC > 0.15 g l?1) is best achieved by using ocean colour ratios, especially the ratio at 810 nm: 700 nm. The effect of particle size of suspended sediment matter (SSM) on the observed remote-sensing reflectance is significant and depends on wavelengths and a SSC range. The mineral composition of SSM has a weak effect on observed reflectance in comparison to that of particle size.  相似文献   

13.
Over the last few decades, the coastal regions throughout the world have experienced incidences of algal blooms, which are harmful or otherwise toxic because of their potential threat to humans as well as marine organisms, owing to accelerated eutrophication from human activities and certain oceanic processes. Previous studies have found that correct identification of these blooms remains a great challenge with the standard bio-optical algorithms applied to satellite ocean color data in optically complex coastal waters containing high concentrations of the interfered dissolved organic and particulate inorganic materials. Here a new method called the red tide index (RI) is presented which is capable of identifying potential areas of harmful algal blooms (HABs) from SeaWiFS ocean color measurements representing the typical Case-2 water environments off the Korean and Chinese coasts. The RI method employs the water-leaving radiances (Lw), collected from in-situ radiometric measurements of three SeaWiFS bands centered at 443 nm, 510 nm and 555 nm, to achieve derivation of indices that are then related to absorbing characteristics of harmful algae (i.e., Lw at 443 nm) from which a best fit with a cubic polynomial function with correlation coefficient of R2 = 0.91 is obtained providing indices of higher ranges for HABs and lower and slightly reduced ranges for turbid and non-bloom waters. Similar indices derived from the use of remote sensing reflectance (Rrs), normalized water-leaving radiance (nLw) and combination of both are found rather inadequate to characterize the variability of the encountered bloom. In order to quantify the HABs in terms of chlorophyll (Chl), an empirical relationship is established between the RI and in-situ Chl in surface waters from about 0.4-71 mg m− 3, which yields a Red tide index Chlorophyll Algorithm (RCA) based on an exponential function with correlation coefficient R2 = 0.92. The established methods were extensively tested and compared with the performances of standard Ocean Chlorophyll 4 (OC4) algorithm and Local Chlorophyll Algorithm (LCA) using SeaWiFS images collected from typical red tide waters of Korean South Sea (KSS), East China Sea (ECS), Yellow Sea (YS) and Bohai Sea (BS) during 1999-2002. The standard spectral ratio algorithms, the OC4 and LCA, yielded large errors in Chl retrievals for coastal areas, besides providing false information about the encountered HABs in KSS, ECS, YS and BS waters. On the contrary, the RI coupled with the standard spectral ratios yielded comprehensive information about various ranges of algal blooms, while RCA Chl showing a good agreement with in-situ data led to enhanced understanding of the spatial and temporal variability of the recent HAB occurrences in high scattering and absorbing waters off the Korean and Chinese coasts.  相似文献   

14.
Biophysical and above-water reflectance measurements collected in 2006 were used to evaluate the OC3M, standard GSM01, and a modified version of the GSM01 algorithms for estimating chlorophyll-a (chl) concentrations in the Strait of Georgia, located off the southwest coast of Canada. The Strait was generally a case 2 water body, transitioning from chromophoric dissolved organic matter (CDOM) dominant in the central region to possibly particulate dominant in Fraser River plume regions. Results showed that the OC3M algorithm was somewhat effective (R2 = 0.550) outside the most turbid areas of the Fraser River plume. However, a systematic overestimation of lower chl concentrations was found, which may have been related to the higher CDOM absorption observed throughout the Strait. The standard GSM01 algorithm had moderately good agreement with measured CDOM absorption (R2 = 0.593) and total suspended solids (TSS) concentrations (R2 = 0.888), but was ineffective at estimating chl concentrations. Localized characterization of the CDOM absorption, through a hyperbolic CDOM model, improved the modified GSM01 results with slightly better agreement with measure CDOM absorption (R2 = 0.614) and TSS concentrations (R2 = 0.933). When the modified GSM01 algorithm was limited to regions with lower combined CDOM and non-algal particulate absorption (adg (443) < 0.7 m− 1), it was more effective then the OC3M algorithm at estimating chl concentrations. This suggests that a threshold value on the adg (443) or bbp (443) estimated by the GSM01 algorithm may be beneficial for limiting turbidity influence on the algorithm. The further reinterpretation of phytoplankton absorption from the modified GSM01 algorithm with a two-component phytoplankton model resulted in a chl relationship with an R2 = 0.677 and a linear slope closer to one.  相似文献   

15.
Eddy covariance (EC) measurements have greatly advanced our knowledge of carbon exchange in terrestrial ecosystems. However, appropriate techniques are required to upscale these spatially discrete findings globally. Satellite remote sensing provides unique opportunities in this respect, but remote sensing of the photosynthetic light-use efficiency (ε), one of the key components of Gross Primary Production, is challenging. Some progress has been made in recent years using the photochemical reflectance index, a narrow waveband index centered at 531 and 570 nm. The high sensitivity of this index to various extraneous effects such as canopy structure, and the view observer geometry has so far prevented its use at landscape and global scales. One critical aspect of upscaling PRI is the development of generic algorithms to account for structural differences in vegetation. Building on previous work, this study compares the differences in the PRI: ? relationship between a coastal Douglas-fir forest located on Vancouver Island, British Columbia, and a mature Aspen stand located in central Saskatchewan, Canada. Using continuous, tower-based observations acquired from an automated multi-angular spectro-radiometer (AMSPEC II) installed at each site, we demonstrate that PRI can be used to measure ? throughout the vegetation season at the DF-49 stand (r2 = 0.91, p < 0.00) as well as the deciduous site (r2 = 0.88, p < 0.00). It is further shown that this PRI signal can be also observed from space at both sites using daily observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) and a multi-angular implementation of atmospheric correction (MAIAC) (r2 = 0.54 DF-49; r2 = 0.63 SOA; p < 0.00). By implementing a simple hillshade model derived from airborne light detection and ranging (LiDAR) to approximate canopy shadow fractions (αs), it is further demonstrated that the differences observed in the relationship between PRI and ε at DF-49 and SOA can be attributed largely to differences in αs. The findings of this study suggest that algorithms used to separate physiological from extraneous effects in PRI reflectance may be more broadly applicable and portable across these two climatically and structurally different biome types, when the differences in canopy structure are known.  相似文献   

16.
The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were conducted in semi-arid woodland savannah of Chobe National Park (Botswana), where fire temperature (Tmax) and duration (dt) were recorded using thermocouples positioned at different heights and locations. These variables, along with measures of fireline intensity (FLI), integrated temperature with time (Tsum) and biomass (and carbon/nitrogen) volatilised were compared to post-fire surface spectral reflectance. Statistically significant relationships were observed between (i) the fireline intensity and total nitrogen volatilised (r2 = 0.54, n = 36, p < 0.001), (ii) integrated temperature (Tsum−μ) and total biomass combusted (r2 = 0.72, n = 32, p < 0.001), and (iii) fire duration as measured at the top-of-grass sward thermocouple (dtT) and total biomass combusted (r2 = 0.74, n = 34, p < 0.001) and total nitrogen volatilised (r2 = 0.73, n = 34, p < 0.001). The post-fire surface spectral reflectance was found to be related to dt and Tsum via a quadratic relationship that varied with wavelength. The use of visible and shortwave infrared band ratios produced statistically significant linear relationships with fire duration as measured by the top thermocouple (dtT) (r2 = 0.76, n = 34, p < 0.001) and the mean of Tsum (r2 = 0.82, n = 34, p < 0.001). The results identify fire duration as a versatile measure that relates directly to the fire severity, and also illustrate the potential of spectrally-based fire severity measures. However, the results also point to difficulties when applying such spectrally-based techniques to Earth Observation satellite imagery, due to the small-scale variability noted on the ground. Results also indicate the potential for surface spectral reflectance to increase following higher severity fires, due to the laying down of high albedo white mineral ash. Most current techniques for mapping burned area rely on the general assumption that surface albedo decreases following a fire, and so if the image spatial resolution was high enough such methods may fail. Determination of the effect of spatial resolution on a sensor's ability to detect white ash was investigated using a validated optical mixture modelling approach. The most appropriate mixing model to use (linear or non-linear) was assessed using laboratory experiments. A linear mixing model was shown most appropriate, with results suggesting that sensors having spatial resolutions significantly higher than those of Landsat ETM+ will be required if patches of white ash are to be used to provide EO-derived information on the spatial variation of fire severity.  相似文献   

17.
Cyanobacteria represent a major harmful algal group in fresh to brackish water environments. Lac des Allemands, a freshwater lake of 49 km2 southwest of New Orleans, Louisiana on the upper end of the Barataria Estuary, provides a natural laboratory for remote characterization of cyanobacterial blooms because of their seasonal occurrence. The Oceansat-1 satellite Ocean Colour Monitor (OCM) provides measurements similar to SeaWiFS but with higher spatial resolution, and this work is the first attempt to use OCM measurements to quantify cyanobacterial pigments. The satellite signal was first vicariously calibrated using SeaWiFS as a reference, and then corrected to remove the atmospheric effects using a customized atmospheric correction procedure. Then, empirical inversion algorithms were developed to convert the OCM remote sensing reflectance (Rrs) at bands 4 and 5 (centered at 510.6 and 556.4 nm, respectively) to concentrations of phycocyanin (PC), the primary cyanobacterial pigment. A holistic approach was used to minimize the influence of other optically active constituents on the PC algorithm. Similarly, empirical algorithms to estimate chlorophyll a (Chl a) concentrations were developed using OCM bands 5 and 6 (centered at 556.4 and 669 nm, respectively). The best PC algorithm (R2 = 0.7450, p < 0.0001, n = 72) yielded a root mean square error (RMSE) of 36.92 μg/L with a relative RMSE of 10.27% (PC from 2.75 to 363.50 μg/L, n = 48). The best algorithm for Chl a (R2 = 0.7510, p < 0.0001, n = 72) produced an RMSE of 31.19 μg/L with a relative RMSE of 16.56% (Chl a from 9.46 to 212.76 μg/L, n = 48). While more field data are required to further validate the long-term performance of these algorithms, currently they represent the best protocol for establishing a long time-series of cyanobacterial blooms in the Lac des Allemands using OCM data.  相似文献   

18.
The relative concentrations of different pigments within a leaf have significant physiological and spectral consequences. Photosynthesis, light use efficiency, mass and energy exchange, and stress response are dependent on relationships among an ensemble of pigments. This ensemble also determines the visible characteristics of a leaf, which can be measured remotely and used to quantify leaf biochemistry and structure. But current remote sensing approaches are limited in their ability to resolve individual pigments. This paper focuses on the incorporation of three pigments—chlorophyll a, chlorophyll b, and total carotenoids—into the LIBERTY leaf radiative transfer model to better understand relationships between leaf biochemical, biophysical, and spectral properties.Pinus ponderosa and Pinus jeffreyi needles were collected from three sites in the California Sierra Nevada. Hemispheric single-leaf visible reflectance and transmittance and concentrations of chlorophylls a and b and total carotenoids of fresh needles were measured. These data were input to the enhanced LIBERTY model to estimate optical and biochemical properties of pine needles. The enhanced model successfully estimated reflectance (RMSE = 0.0255, BIAS = 0.00477, RMS%E = 16.7%), had variable success estimating transmittance (RMSE = 0.0442, BIAS = 0.0294, RMS%E = 181%), and generated very good estimates of carotenoid concentrations (RMSE = 2.48 µg/cm2, BIAS = 0.143 µg/cm2, RMS%E = 20.4%), good estimates of chlorophyll a concentrations (RMSE = 10.7 µg/cm2, BIAS = − 0.992 µg/cm2, RMS%E = 21.1%), and fair estimates of chlorophyll b concentrations (RMSE = 7.49 µg/cm2, BIAS = − 2.12 µg/cm2, RMS%E = 43.7%). Overall root mean squared errors of reflectance, transmittance, and pigment concentration estimates were lower for the three-pigment model than for the single-pigment model. The algorithm to estimate three in vivo specific absorption coefficients is robust, although estimated values are distorted by inconsistencies in model biophysics. The capacity to invert the model from single-leaf reflectance and transmittance was added to the model so it could be coupled with vegetation canopy models to estimate canopy biochemistry from remotely sensed data.  相似文献   

19.
20.
Detection of sub-surface optical layers in marine waters has important applications in fisheries management, climate modeling, and decision-based systems related to military operations. Concurrent changes in the magnitude and spatial variability of remote sensing reflectance (Rrs) ratios and submerged scattering layers were investigated in coastal waters of the northern Gulf of Alaska during summer of 2002 based on high resolution and simultaneous passive (MicroSAS) and active (Fish Lidar Oceanic Experimental, FLOE) optical measurements. Principal Component Analysis revealed that the spatial variability of total lidar backscattering signal (S) between 2.1 and 20 m depth was weakly associated with changes in the inherent optical properties (IOPs) of surface waters. Also based on a 250-m footprint, the vertical attenuation of S was inversely related to the IOPs (Spearman Rank Correlation up to −0.43). Low (arithmetic average and standard deviation) and high (skewness and kurtosis) moments of Rrs(443)/Rrs(490) and Rrs(508)/Rrs(555) ratios were correlated with vertical changes in total lidar backscattering signal (S) at different locations. This suggests the use of sub-pixel ocean color statistics to infer the spatial distribution of sub-surface scattering layers in coastal waters characterized by stratified conditions, well defined S layers (i.e., magnitude of S maximum comparable to near surface values), and relatively high vertically integrated phytoplankton pigments in the euphotic zone (chlorophyll a concentration > 150 mg m− 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号