首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in instrument design have led to considerable improvements in wildfire mapping at regional and global scales. Global and regional active fire and burned area products are currently available from various satellite sensors. While only global products can provide consistent assessments of fire activity at the global, hemispherical or continental scales, the efficiency of their performance differs in various ecosystems. The available regional products are hard-coded to the specifics of a given ecosystem (e.g. boreal forest) and their mapping accuracy drops dramatically outside the intended area. We present a regionally adaptable semi-automated approach to mapping burned area using Moderate Resolution Imaging Spectroradiometer (MODIS) data. This is a flexible remote sensing/GIS-based algorithm which allows for easy modification of algorithm parameterization to adapt it to the regional specifics of fire occurrence in the biome or region of interest. The algorithm is based on Normalized Burned Ratio differencing (dNBR) and therefore retains the variability of spectral response of the area affected by fire and has the potential to be used beyond binary burned/unburned mapping for the first-order characterization of fire impacts from remotely sensed data. The algorithm inputs the MODIS Surface Reflectance 8-Day Composite product (MOD09A1) and the MODIS Active Fire product (MOD14) and outputs yearly maps of burned area with dNBR values and beginning and ending dates of mapping as the attributive information. Comparison of this product with high resolution burn scar information from Landsat ETM+ imagery and fire perimeter data shows high levels of accuracy in reporting burned area across different ecosystems. We evaluated algorithm performance in boreal forests of Central Siberia, Mediterranean-type ecosystems of California, and sagebrush steppe of the Great Basin region of the US. In each ecosystem the MODIS burned area estimates were within 15% of the estimates produced by the high resolution base with the R2 between 0.87 and 0.99. In addition, the spatial accuracy of large burn scars in the boreal forests of Central Siberia was also high with Kappa values ranging between 0.76 and 0.79.  相似文献   

2.
Fire is an important natural disturbance process in many ecosystems, but humans can irrevocably change natural fire regimes. Quantifying long-term change in fire regimes is important to understand the driving forces of changes in fire dynamics, and the implications of fire regime changes for ecosystem ecology. However, assessing fire regime changes is challenging, especially in grasslands because of high intra- and inter-annual variation of the vegetation and temporally sparse satellite data in many regions of the world. The breakdown of the Soviet Union in 1991 caused substantial socioeconomic changes and a decrease in grazing pressure in Russia's arid grasslands, but how this affected grassland fires is unknown. Our research goal was to assess annual burned area in the grasslands of southern Russia before and after the breakdown. Our study area covers 19,000 km2 in the Republic of Kalmykia in southern Russia in the arid grasslands of the Caspian plains. We estimated annual burned area from 1985 to 2007 by classifying AVHRR data using decision tree algorithm, and validated the results with RESURS, Landsat and MODIS data. Our results showed a substantial increase in burned area, from almost none in the 1980s to more than 20% of the total study area burned in both 2006 and 2007. Burned area started to increase around 1998 and has continued to increase, albeit with high fluctuations among years. We suggest that it took several years after livestock numbers decreased in the beginning of the 1990s for vegetation to recover, to build up enough fuel, and to reach a threshold of connectivity that could sustain large fires. Our burned area detection algorithm was effective, and captured burned areas even with incomplete annual AVHRR data. Validation results showed 68% producer's and 56% user's accuracy. Lack of frequent AVHRR data is a common problem and our burned area detection approach may also be suitable in other parts of the world with comparable ecosystems and similar AVHRR data limitations. In our case, AVHRR data were the only satellite imagery available far enough back in time to reveal marked increases in fire regimes in southern Russia before and after the breakdown of the Soviet Union.  相似文献   

3.
Improved wildland fire emission inventory methods are needed to support air quality forecasting and guide the development of air shed management strategies. Air quality forecasting requires dynamic fire emission estimates that are generated in a timely manner to support real-time operations. In the regulatory and planning realm, emission inventories are essential for quantitatively assessing the contribution of wildfire to air pollution. The development of wildland fire emission inventories depends on burned area as a critical input. This study presents a Moderate Resolution Imaging Spectroradiometer (MODIS) - direct broadcast (DB) burned area mapping algorithm designed to support air quality forecasting and emission inventory development. The algorithm combines active fire locations and single satellite scene burn scar detections to provide a rapid yet robust mapping of burned area. Using the U.S. Forest Service Fire Sciences Laboratory (FiSL) MODIS-DB receiving station in Missoula, Montana, the algorithm provided daily measurements of burned area for wildfire events in the western U.S. in 2006 and 2007. We evaluated the algorithm's fire detection rate and burned area mapping using fire perimeter data and burn scar information derived from high resolution satellite imagery. The FiSL MODIS-DB system detected 87% of all reference fires > 4 km2, and 93% of all reference fires > 10 km2. The burned area was highly correlated (R2 = 0.93) with a high resolution imagery reference burn scar dataset, but exhibited a large over estimation of burned area (56%). The reference burn scar dataset was used to calibrate the algorithm response and quantify the uncertainty in the burned area measurement at the fire incident level. An objective, empirical error based approach was employed to quantify the uncertainty of our burned area measurement and provide a metric that is meaningful in context of remotely sensed burned area and emission inventories. The algorithm uncertainty is ± 36% for fires 50 km2 in size, improving to ± 31% at a fire size of 100 km2. Fires in this size range account for a substantial portion of burned area in the western U.S. (77% of burned area is due to fires > 50 km2, and 66% results from fires > 100 km2). The dominance of these large wildfires in burned area, duration, and emissions makes these events a significant concern of air quality forecasters and regulators. With daily coverage at 1-km2 spatial resolution, and a quantified measurement uncertainty, the burned area mapping algorithm presented in this paper is well suited for the development of wildfire emission inventories. Furthermore, the algorithm's DB implementation enables time sensitive burned area mapping to support operational air quality forecasting.  相似文献   

4.
Fire is a prominent disturbance factor and a major force of environmental change especially in the African savannas. The development of an accurate system to map and monitor fires on the African continent is a priority of numerous international research centers and programs. This effort has produced a flurry of research projects in recent years to detect and map areas affected by fires at the continental scale using coarse-resolution satellite imagery. The end product of these projects consists of weekly or monthly maps of burned area, several of which are available to the user community on the internet. It is argued here that the algorithms used to generate these products are designed to capture relatively large and contiguously burned areas and that the heterogeneous patterns of burn scars created by mosaic burning regimes pose a problem for current detection methodologies. Fine-scale burned area maps are generated using a series of Landsat ETM+imagery covering the 2002-2003 fire season for the study area in the savanna of southern Mali. These maps document a seasonal-mosaic pattern of burning in which burning begins early in the dry season and continues for several months ultimately affecting over 50% of the landscape. The majority of these fires burn relatively small areas producing a highly fragmented landscape pattern. A comparison of the fine scale maps with those from two widely available coarse-resolution products finds that the latter fail to detect approximately 90% of the burned area. A general argument is developed which suggests that the documented bias in the coarse resolution products is a function of low-resolution bias which derives from the fine-scale spatiotemporal pattern of burning not uncommon to savanna and other frequently burned environments. The study demonstrates how low-resolution bias can result in a significant underestimation of burned areas and/or a shift in the seasonal burned area profile in areas where mosaic burning occurs. The findings have implications for the development of broad-scale burned area detection algorithms as well as their applications to natural resource management and global environmental change research.  相似文献   

5.
The spectral, spatial and temporal characteristics of the Landsat data record make it appropriate for mapping fire scars. Twenty-two annual fire scar maps from 1972–2002 were produced from historical Landsat imagery for a semi-arid savannah landscape on the South Africa–Botswana border, centred over Madikwe Game Reserve (MGR) in South Africa. A principal components transformation (PCT) helped differentiate the spectral signal of fire scars in each image. A simple, nonparametric, supervised classification (parallelepiped) of the PCT data differentiated burned and unburned areas. During most years, fire occurrences and the percentage of area burned annually were lowest in Botswana, highest in MGR, and intermediate in South Africa outside MGR. These fire scar maps are aiding MGR managers, who are endeavouring to restore a more active fire regime following decades of fire exclusion.  相似文献   

6.
Fires in Africa affect atmospheric emissions and carbon sequestration, landscape patterns, and regional and global climatic conditions. Studies of these effects require accurate estimation of the extent of measurable fire events. The goal of this study was to assess the influence of burned area spatial patterns on the spectral detectability of burned areas. Six Landsat‐7 ETM+ images from the southern Africa were used for burned area mapping and spatial pattern analysis, while contemporaneous MODIS 500 m spatial resolution images were used to measure the spectral detectability of burned areas. Using a 15 by 15 km sample quadrats analysis, we showed that above a burned area proportion threshold of approximately 0.5 the spectral detectability of burned areas increase due to the decrease in the number of mixed pixels. This was spatially related to the coalescence of burned patches and the decrease in the total burned area perimeter. Simple burned area shapes were found at the Botswana site, where the absence of tree cover and the presence of bright surfaces (soil and dry grass) enhanced the spectral contrast of the burned surfaces, thus enabling better estimates of burned area extent. At the Zambia and Congo sites, landscape fragmentation due to human activity and the presence of a tree vegetation layer, respectively, contribute to the presence of small burned area patches, which may remain undetectable using moderate spatial resolution satellite imagery, leading to less accurate burned area extent estimates.  相似文献   

7.
The detection and mapping of burned areas from wildland fires is one of the most important approaches for evaluating the impacts of fire events. In this study, a novel burned area detection algorithm for rapid response applications using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m surface reflectance data was developed. Spectra from bands 5 and 6, the composite indices of the Normalized Burn Ratio, and the Normalized Difference Vegetation Index were employed as indicators to discover burned pixels. Historical statistical data were used to provide pre-fire baseline information. Differences in the current (post-fire) and historical (pre-fire) data were input into a support vector machine classifier, and the fire-affected pixels were detected and mapped by the support vector machine classification process. Compared with the existing MODIS level 3 monthly burned area product MCD45, the new algorithm is able to generate burned area maps on a daily basis when new data become available, which is more applicable to rapid response scenarios when major fire incidents occur. The algorithm was tested in three mega-fire cases that occurred in the continental USA. The experimental results were validated against the fire perimeter database generated by the Geospatial Multi-Agency Coordination Group and were compared with the MCD45 product. The validation results indicated that the algorithm was effective in detecting burned areas caused by mega-fires.  相似文献   

8.
Accurate production of regional burned area maps are necessary to reduce uncertainty in emission estimates from African savannah fires. Numerous methods have been developed that map burned and unburned surfaces. These methods are typically applied to coarse spatial resolution (1 km) data to produce regional estimates of the area burned, while higher spatial resolution (<30 m) data are used to assess their accuracy with little regard to the accuracy of the higher spatial resolution reference data. In this study we aimed to investigate whether Landsat Enhanced Thematic Mapper (ETM+)‐derived reference imagery can be more accurately produced using such spectrally informed methods. The efficacy of several spectral index methods to discriminate between burned and unburned surfaces over a series of spatial scales (ground, IKONOS, Landsat ETM+ and data from the MOderate Resolution Imaging Spectrometer, MODIS) were evaluated. The optimal Landsat ETM+ reference image of burned area was achieved using a charcoal fraction map derived by linear spectral unmixing (k = 1.00, a = 99.5%), where pixels were defined as burnt if the charcoal fraction per pixel exceeded 50%. Comparison of coincident Landsat ETM+ and IKONOS burned area maps of a neighbouring region in Mongu (Zambia) indicated that the charcoal fraction map method overestimated the area burned by 1.6%. This method was, however, unstable, with the optimal fixed threshold occurring at >65% at the MODIS scale, presumably because of the decrease in signal‐to‐noise ratio as compared to the Landsat scale. At the MODIS scale the Mid‐Infrared Bispectral Index (MIRBI) using a fixed threshold of >1.75 was determined to be the optimal regional burned area mapping index (slope = 0.99, r 2 = 0.95, SE = 61.40, y = Landsat burned area, x = MODIS burned area). Application of MIRBI to the entire MODIS temporal series measured the burned area as 10 267 km2 during the 2001 fire season. The char fraction map and the MIRBI methodologies, which both produced reasonable burned area maps within southern African savannah environments, should also be evaluated in woodland and forested environments.  相似文献   

9.
The monitoring of annual burned forest area is commonly used to evaluate forest fire carbon release and forest recovery and can provide information on the evolution of carbon sources and sinks. In this work, a new method for mapping annual burned area using four types of change metrics constructed from Moderate Resolution Imaging Spectroradiometer (MODIS) data for Manitoba, Canada, was developed for the 2003–2007 period. The proposed method included the following steps: (1) four types of change metrics constructed from MODIS composite data; (2) Stochastic Gradient Boosting algorithm; and (3) two thresholds to ascertain the final burned area map. Fire-event records from the Canadian National Fire Database (CNFDB) for Manitoba were used to train and validate the proposed algorithm. The predicted burned area was within 91.8% of the CNFDB results for all of the study years. The results indicate that the presented metrics could retain spectral information necessary to discriminate between burned and unburned forests while reducing the effects of clouds and other noise typically present in single-date imagery. A visual comparison to Thematic Mapper (TM) images further revealed that in some areas the mapping provided improvement to the CNFDB data set.  相似文献   

10.
The remote sensing of Earth surface changes is an active research field aimed at the development of methods and data products needed by scientists, resource managers, and policymakers. Fire is a major cause of surface change and occurs in most vegetation zones across the world. The identification and delineation of fire-affected areas, also known as burned areas or fire scars, may be considered a change detection problem. Remote sensing algorithms developed to map fire-affected areas are difficult to implement reliably over large areas because of variations in both the surface state and those imposed by the sensing system. The availability of robustly calibrated, atmospherically corrected, cloud-screened, geolocated data provided by the latest generation of moderate resolution remote sensing systems allows for major advances in satellite mapping of fire-affected area. This paper describes an algorithm developed to map fire-affected areas at a global scale using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance time series data. The algorithm is developed from the recently published Bi-Directional Reflectance Model-Based Expectation change detection approach and maps at 500 m the location and approximate day of burning. Improvements made to the algorithm for systematic global implementation are presented and the algorithm performance is demonstrated for southern African, Australian, South American, and Boreal fire regimes. The algorithm does not use training data but rather applies a wavelength independent threshold and spectral constraints defined by the noise characteristics of the reflectance data and knowledge of the spectral behavior of burned vegetation and spectrally confusing changes that are not associated with burning. Temporal constraints are applied capitalizing on the spectral persistence of fire-affected areas. Differences between mapped fire-affected areas and cumulative MODIS active fire detections are illustrated and discussed for each fire regime. The results reveal a coherent spatio-temporal mapping of fire-affected area and indicate that the algorithm shows potential for global application.  相似文献   

11.
Recent advances in sensor technology have led to the development of new hyper-spectral instruments capable of measuring reflected radiation over a wide range of wavelengths. These instruments can be used to assess the diverse characteristics of vegetation recovery that are only noticeable in certain parts of the electromagnetic spectrum. In this research, such instruments were used to study vegetation recovery following a forest fire in a Mediterranean ecosystem. The specific event occurred in an area called El Rodenal of Guadalajara (in Central Spain) between 16 and 21 July 2005. Remotely sensed hyper-spectral multitemporal data were used to assess the forest vegetation response following the fire. These data were also combined with remotely sensed fire severity data and satellite high temporal resolution data. Four Airborne Hyperspectral Scanner (AHS) hyper-spectral images, 361 Moderate Resolution Imaging Spectroradiometer (MODIS) images, field data, and ancillary information were used in the analysis. The total burned area was estimated to be 129.4 km2. AHS-derived fire severity level-of-damage assessments were estimated using the normalized burn ratio (NBR). Post-fire vegetation recovery was assessed according to a spectral unmixing analysis of the AHS hyper-spectral images and the normalized difference vegetation index (NDVI), as calculated from the MODIS time series. Combining AHS hyper-spectral images with field data provides reliable estimates of burned areas and fire severity levels-of-damage. This combination can also be used to monitor post-fire vegetation recovery trends. MODIS time series were used to determine the types and rates of vegetation recovery after the fire and to support the AHS-based estimates. Data and maps derived using this method may be useful for locating priority intervention areas and planning forest restoration projects.  相似文献   

12.
An operational procedure is presented that allows detecting active fires based on information from Meteosat-8/SEVIRI over Africa. The procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 µm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRA-AQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood.An overview is provided of results obtained for January and July 2007, respectively over Northern Africa (NAfr) and Southern Africa (SAfr), paying special attention to the spatial and temporal distribution of active fires. In both NAfr and SAfr, two types of vegetation clearly dominate in terms of fire activity, namely tree-covered areas, containing 40% of total fires observed, and shrub-covered areas, with 25% (19%) of total fires in NAfr (SAfr). However, marked differences were also to be found between the two regions; more than two-thirds (70%) of fires in SAfr were observed in land cover classes dominated by trees but the proportion is much lower (40%) in the case of NAfr. The duration of active fires in both regions tends to follow two-parameter generalized Pareto distributions, with both the scale and the shape parameters presenting very similar values for NAfr and SAfr.An assessment of the robustness of the algorithm, consistency of results and added value of the product was made by studying the daily cycle of fire activity over two regions located in northern and southern hemisphere Africa and by means of systematic comparisons against fire incidence reported in previous works and against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. The observed fire incidence by land cover class compares well with the results reported in previous works and it is shown that there is an overall coherence between results obtained from SEVIRI and MODIS when adequate spatial and temporal scales are chosen when performing the comparison. Data from MODIS and SEVIRI may be viewed as complementary, the latter having the added value of providing a much finer temporal resolution that allows uncovering certain aspects of fire behavior, namely the characterization of daily fire cycles.  相似文献   

13.
The results of the first consecutive 12 months of the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) global burned area product are presented. Total annual and monthly area burned statistics and missing data statistics are reported at global and continental scale and with respect to different land cover classes. Globally the total area burned labeled by the MODIS burned area product is 3.66 × 106 km2 for July 2001 to June 2002 while the MODIS active fire product detected for the same period a total of 2.78 × 106 km2, i.e., 24% less than the area labeled by the burned area product. A spatio-temporal correlation analysis of the two MODIS fire products stratified globally for pre-fire leaf area index (LAI) and percent tree cover ranges indicate that for low percent tree cover and LAI, the MODIS burned area product defines a greater proportion of the landscape as burned than the active fire product; and with increasing tree cover (> 60%) and LAI (> 5) the MODIS active fire product defines a relatively greater proportion. This pattern is generally observed in product comparisons stratified with respect to land cover. Globally, the burned area product reports a smaller amount of area burned than the active fire product in croplands and evergreen forest and deciduous needleleaf forest classes, comparable areas for mixed and deciduous broadleaf forest classes, and a greater amount of area burned for the non-forest classes. The reasons for these product differences are discussed in terms of environmental spatio-temporal fire characteristics and remote sensing factors, and highlight the planning needs for MODIS burned area product validation.  相似文献   

14.
An algorithm for burned area mapping in Africa based on classification trees was developed using SPOT-VEGETATION (VGT) imagery. The derived 1 km spatial resolution burned area maps were compared with 30 m spatial resolution maps obtained with 13 Landsat ETM+ scenes, through linear regression analysis. The procedure quantifies the bias in burned area estimation present in the low spatial resolution burned area map. Good correspondence was observed for seven sites, with values of the coefficient of determination (R2) ranging from 0.787 to 0.983. Poorer agreement was observed in four sites (R2 values between 0.257 and 0.417), and intermediate values of R2 (0.670 and 0.613) were obtained for two sites. The observed variation in the level of agreement between the Landsat and VGT estimates of area burned results from differences in the spatial pattern and size distribution of burns in the different fire regimes encompassed by our analysis. Small and fragmented burned areas result in large underestimation at 1 km spatial resolution. When large and compact burned areas dominate the landscape, VGT estimates of burned area are accurate, although in certain situations there is some overestimation. Accuracy of VGT burned area estimates also depends on vegetation type. Results showed that in forest ecosystems VGT maps underestimate substantially the amount of burned area. The most accurate estimates were obtained for woodlands and grasslands. An overall linear regression fitted with the data from the 13 comparison sites revealed that there is a strong relationship between VGT and Landsat estimates of burned area, with a value of R2 of 0.754 and a slope of 0.803. Our findings indicate that burned area mapping based on 1 km spatial resolution VGT data provides adequate regional information.  相似文献   

15.
Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars < 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (> 500 ha) burn scars that accounted for the majority of all fire-damaged forests in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 km2) were an order of magnitude higher than during the 1997-1998 El Niño event (124 km2 and 39 km2, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.  相似文献   

16.

The goal of this study was to evaluate the feasibility of sub-pixel burned area detection in the miombo woodlands of northern Mozambique, using imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). Multitemporal Landsat-7 ETM+ data were acquired to produce a high spatial resolution map of areas burned between mid-August and late September 2000, and a field campaign was conducted in early November 2000 to gather ground truth data. Mapping of burned areas was performed with an ensemble of classification trees and yielded a kappa value of 0.896. This map was subsequently degraded to a spatial resolution of 500 m, to produce an estimate of burned area fraction, at the MODIS pixel size. Correlation analysis between the sub-pixel burned area fraction map and the MODIS reflective channels 1-7 yielded low but statistically significant correlations for all channels. The better correlations were obtained for MODIS channels 2 (0.86 µm), 5 (1.24 µm) and 6 (1.64 µm). A regression tree was constructed to predict sub-pixel burned area fraction as a function of those MODIS channels. The resulting tree has nine terminal nodes and an overall root mean square error of 0.252. The regression tree analysis confirmed that MODIS channels 2, 5, and 6 are the best predictors of burned area fraction. It may be possible to improve these results considering, as an alternative to individual channels, some appropriate spectral indices used to enhance the burnt scar signal, and by including MODIS thermal data in the analysis. It may also be possible to improve the accuracy of sub-pixel burned area fraction using MODIS imagery by allowing the regression tree to automatically create linear combinations of individual channels, and by using ensembles of trees.  相似文献   

17.

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, launched on the National Aeronautics and Space Administration Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 µm and 400 K at 11 µm, which can only be attained in rare circumstances at the 1 km fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. Advanced Very High Resolution Radiometer and Along Track Scanning Radiometer), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MODIS solar channels, extending from 0.41 µm to 2.1 µm. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 µm channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern USA in Summer 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real-time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.  相似文献   

18.
A new database of fire activity in Russia derived from 1-km resolution remote sensing imagery is presented and discussed. The procedure used to generate this burned-area product is described, including active-fire detection and burn-scar mapping approaches. Fire detection makes use of a probabilistic procedure using image data from the United States National Oceanic and Atmospheric Administration's (NOAA) advanced very high resolution radiometer (AVHRR) system. Using the combination of AVHRR data collected at the Krasnoyarsk, Russia, high-resolution picture transmission (HRPT) receiving station, and data from the NOAA Satellite Active Archive (SAA), fire maps are being created for all of Russia for 1995 to 1997 and all of Eastern Russia (east of the Ural Mountains) for 1995 to 2002. This mapping effort has resulted in the most complete set of historic fire maps available for Russia. An initial validation indicates that the burned-area estimates are conservative because the approaches do not detect smaller fires, and, in many cases, fire areas are slightly underestimated. Analyses using the fire database showed that an average of 7.7×106 ha yr−1 of fire occurred in Eastern Russia between 1996 and 2002 and that fire was widely dispersed in different regions. The satellite-based burned-area estimates area were two to five times greater than those contained in official government burned-area statistics. The data show that there is significant interannual variability in area burned, ranging between a low of 1.5×106 ha in 1997 to a high of 12.1×106 ha in 2002. Seasonal patterns of fire are similar to patterns seen in the North American boreal region, with large-fire seasons experiencing more late-season burning (in August and September) than during low-fire years. There was a distinct zonal distribution of fires in Russia; 65% of the area burned occurred in the taiga zone, which includes southern, middle, and northern taiga subzones, 20% in the steppe and forest steppe zones, 12% in the mixed forest zone, and 3% in the tundra and forest-tundra zones. Lands classified as forest experienced 55% of all burned area, while crops and pastures, swamps and bogs, and grass and shrubs land cover categories experienced 13% to 15% each. Finally, the utility of the products is discussed in the context of fire management and carbon cycling.  相似文献   

19.
MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1 km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (≥ 18 ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1 km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105 ha when combining Aqua and Terra (195 ha for Aqua and 334 ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included.  相似文献   

20.
The burned area, fuel type, crown fire percentage, and carbon release of the southern Siberia 2003 wildfire were analysed using AVHRR, MODIS, MERIS, ASTER images and a carbon release model. More than 200 000 km2 were burned from 14 March to 8 August 2003, of which 71.4% was forest, 9.5% humid grassland, and 2.15% bogs or marshes. During 1996 to 2003, 32.2% of the forested area and 23.36% of the total area was burned, and 13.9% of the total area was affected by fire at least twice. Direct carbon emission from this 2003 fire was around 400640 Tg. The 2003 Siberian fires could well have contributed to the high increase of the atmospheric CO2 and CO concentration in 2003. The increasing human pressure coupled with intensive fire severity, recurrent fire frequency, and increasing occurrence of summer droughts will reduce the carbon sequestration potential of this important carbon pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号