首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
To effectively manage forested ecosystems an accurate characterization of species distribution is required. In this study we assess the utility of hyperspectral Airborne Imaging Spectrometer for Applications (AISA) imagery and small footprint discrete return Light Detection and Ranging (LiDAR) data for mapping 11 tree species in and around the Gulf Islands National Park Reserve, in coastal South-western Canada. Using hyperspectral imagery yielded producer's and user's accuracies for most species ranging from > 52-95.4 and > 63-87.8%, respectively. For species dominated by definable growth stages, pixel-level fusion of hyperspectral imagery with LiDAR-derived height and volumetric canopy profile data increased both producer's (+ 5.1-11.6%) and user's (+ 8.4-18.8%) accuracies. McNemar's tests confirmed that improvements in overall accuracies associated with the inclusion of LiDAR-derived structural information were statistically significant (p < 0.05). This methodology establishes a specific framework for mapping key species with greater detail and accuracy then is possible using conventional approaches (i.e., aerial photograph interpretation), or either technology on its own. Furthermore, in the study area, acquisition and processing costs were lower than a conventional aerial photograph interpretation campaign, making hyperspectral/LiDAR fusion a viable replacement technology.  相似文献   

2.
Due to increased fuel loading as a result of fire suppression, land managers in the American west are in need of precise information about the fuels they manage, including canopy fuels. Canopy fuel metrics such as canopy height (CH), canopy base height (CBH), canopy bulk density (CBD) and available canopy fuel (ACF) are specific inputs for wildfire behavior models such as FARSITE and emission models such as FOFEM. With finer spatial resolution data, accurate quantification of these metrics with detailed spatial heterogeneity can be accomplished. Light Detection and Ranging (LiDAR) and color near-infrared imagery are active and passive systems, respectively, that have been utilized for measuring a range of forest structure characteristics at high resolution. The objective of this research was to determine which remote sensing dataset can estimate canopy fuels more accurately and whether a fusion of these datasets produces more accurate estimates. Regression models were developed for ponderosa pine (Pinus ponderosa) stand representative of eastern Washington State using field data collected in the Ahtanum State Forest and metrics derived from LiDAR and imagery. Strong relationships were found with LiDAR alone and LiDAR was found to increase canopy fuel accuracy compared to imagery. Fusing LiDAR with imagery and/or LiDAR intensity led to small increases in estimation accuracy over LiDAR alone. By improving the ability to estimate canopy fuels at higher spatial resolutions, spatially explicit fuel layers can be created and used in wildfire behavior and smoke emission models leading to more accurate estimations of crown fire risk and smoke related emissions.  相似文献   

3.
Studies of caribou herds in northern regions are important to better understand population dynamics and define wildlife management strategies. Lichen is a primary food source for caribou and is a good indicator of caribou herd activity because of its sensitivity to overgrazing and overtrampling, its widespread distribution over northern areas, and its influence on herd demography. In this paper, we used Landsat TM imagery for mapping lichen in the summer range of the George River caribou herd in northern Quebec, Canada. Results from the enhancement_classification method (ECM) and from spectral mixture analysis (SMA) were evaluated for their suitability to characterize lichen landcover and for their potential to be applied over large territories. ECM and SMA are assessed individually, and also for potential synergistic use. ECM is based on guided unsupervised classification of enhanced satellite images. Validation based on 3536 pixels from a relatively smaller number of field sites (20) showed an overall accuracy of 74.5% (kappa=0.70) for 10 classes and good discrimination between lichen and non_lichen classes, though we interpret these results with caution due to spatial autocorrelation and non_random sampling within field sites. However, discrimination amongst different lichen classes using ECM was more problematic. SMA derives the proportion of individual scene components at sub_pixel scales. This method provided good results in characterizing variations in lichen abundance validated against field observations, and provided additional and new information not provided by ECM which is important since the abundance of lichen as a primary food source is a key indicator of migration and demographic patterns essential for effective wildlife management. We concluded that the ECM and SMA methods are appropriate for different aspects of lichen mapping. ECM provided good discrimination between lichen and non_lichen classes whereas SMA provided additional lichen information not available by classification yet critical to the environmental application, which is also appropriate for application over much larger areas and in spatio_temporal studies. A synergistic use of SMA and ECM is therefore recommended for future research.  相似文献   

4.
Remote sensing of forest vertical structure is possible with lidar data, but lidar is not widely available. Here we map tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m), and we map foliage height profiles, with a time series of Landsat and Advanced Land Imager (ALI) imagery on the island of Eleuthera, The Bahamas, substituting time for vertical canopy space. We also simultaneously map forest disturbance type and age. We map these variables in the context of avian habitat studies, particularly for wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii). We also illustrate relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series are both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitates. Also unique to this study is that seven of the eight image time steps are cloud-cleared images: mosaics of the clear parts of several cloudy scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization. We also illustrate how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age. Our results strongly support current Landsat Program production of co-registered imagery, and they emphasize the value of seamless time series of cloud-cleared imagery.  相似文献   

5.
It has been suggested that attempts to use remote sensing to map the spatial and structural patterns of individual tree species abundances in heterogeneous forests, such as those found in northeastern North America, may benefit from the integration of hyperspectral or multi-spectral information with other active sensor data such as lidar. Towards this end, we describe the integrated and individual capabilities of waveform lidar and hyperspectral data to estimate three common forest measurements - basal area (BA), above-ground biomass (AGBM) and quadratic mean stem diameter (QMSD) - in a northern temperate mixed conifer and deciduous forest. The use of this data to discriminate distribution and abundance patterns of five common and often, dominant tree species was also explored. Waveform lidar imagery was acquired in July 2003 over the 1000 ha. Bartlett Experimental Forest (BEF) in central New Hampshire (USA) using NASA's airborne Laser Vegetation Imaging Sensor (LVIS). High spectral resolution imagery was likewise acquired in August 2003 using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Field data (2001-2003) from over 400 US Forest Service Northern Research Station (USFS NRS) plots were used to determine actual site conditions.Results suggest that the integrated data sets of hyperspectral and waveform lidar provide improved outcomes over use of either data set alone in evaluating common forest metrics. Across all forest conditions, 8-9% more of the variation in AGBM, BA, and QMSD was explained by use of the integrated sensor data in comparison to either AVIRIS or LVIS metrics applied singly, with estimated error 5-8% lower for these variables. Notably, in an analysis using integrated data limited to unmanaged forest tracts, AGBM coefficients of determination improved by 25% or more, while corresponding error levels decreased by over 25%. When data were restricted based on the presence of individual tree species within plots, AVIRIS data alone best predicted species-specific patterns of abundance as determined by species fraction of biomass. Nonetheless, use of LVIS and AVIRIS data - in tandem - produced complementary maps of estimated abundance and structure for individual tree species, providing a promising adjunct to traditional forest inventory and conservation biology planning efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号