首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper evaluates the ability of small footprint, multiple return and pulsed airborne scanner data to classify tree genera hierarchically using stepwise cluster analysis. Leaf-on and leaf-off airborne scanner datasets obtained in the Washington Park Arboretum, Seattle, Washington, USA were used for tree genera classification. Parameters derived from structure and intensity data from the leaf-on and leaf-off laser scanning datasets were compared to ground truth data. Relative height percentiles and simple crown shapes using the ratio of a crown length to width were computed for the structure variables. Selected structure variables from the leaf-on dataset had higher classification rate (74.9%) than those from the leaf-off dataset (50.2%) for distinguishing deciduous from coniferous genera using linear discriminant functions.Unsupervised stepwise cluster analysis was conducted to find groupings of similar genera at consecutive steps using k-medoid algorithm. The three stepwise cluster analyses using different seasonal laser scanning datasets resulted in different outcomes, which imply that genera might be grouped differently depending on the timing of the data collection. When combining leaf-on and leaf-off LIDAR datasets, the cluster analysis could separate the deciduous genera from evergreen coniferous genera and could make further separations between evergreen coniferous genera. When using the leaf-on LIDAR dataset only, the cluster analysis did not separate deciduous from evergreen genera. The overall results indicate the importance of the timing of laser scanner data acquisition for tree genera separation and suggest that the potential of combining two LIDAR datasets for improved classification.  相似文献   

2.
ABSTRACT

The long-standing goal of discriminating tree species at the crown-level from high spatial resolution imagery remains challenging. The aim of this study is to evaluate whether combining (a) high spatial resolution multi-temporal images from different phenological periods (spring, summer and autumn), and (b) leaf-on LiDAR height and intensity data can enhance the ability to discriminate the species of individual tree crowns of red oak (Quercus rubra), sugar maple (Acer saccharum), tulip poplar (Liriodendron tulipifera), and black cherry (Prunus serotina) in the Fernow Experimental Forest, West Virginia, USA. We used RandomForest models to measure a loss of classification accuracy caused by iteratively removing from the classification one or more groups from six groups of variables: spectral reflectance from all multispectral bands in the (1) spring, (2) summer, and (3) autumn images, (4) vegetation indices derived from the three multispectral datasets, (5) canopy height and intensity from the LiDAR imagery, and (6) texture related variables from the panchromatic and LiDAR datasets. We also used ANOVA and decision tree analyses to elucidate how the multispectral and LiDAR datasets combine to help discriminate tree species based on their unique phenological, spectral, textural, and crown architectural traits. From these results, we conclude that combing high spatial resolution multi-temporal satellite data with LiDAR datasets can enhance the ability to discriminate tree species at the crown level.  相似文献   

3.
Adaptive single tree detection methods using airborne laser scanning (ALS) data were investigated and validated on 40 large plots sampled from a structurally heterogeneous boreal forest dominated by Norway spruce and Scots pine. Under the working assumption of having uniformly distributed tree locations, area-based stem number estimates were used to guide tree crown delineation from rasterized laser data in two ways: (1) by controlling the amount of smoothing of the canopy height model and (2) by obtaining an appropriate spatial resolution for representing the forest canopy. Single tree crowns were delineated from the canopy height models (CHMs) using a marker-based watershed algorithm, and the delineation results were assessed using a simple tree crown delineation algorithm as a reference method (‘RefMeth’). Using the proposed methods, approximately 46–50% of the total number of trees were detected, while approximately 5–6% false positives were found. The detection rate was, in general, higher for Scots pine than for Norway spruce. The accuracy of individual tree variables (total height and crown width) extracted from the laser data was compared with field-measured data. The individual tree heights were better estimated for deciduous tree species than for the coniferous species Norway spruce and Scots pine. The estimation of crown diameters for Scots pine and deciduous species achieved comparable accuracy, being better than for Norway spruce. The proposed methodology has the potential for easy integration with operational laser scanner-based stand inventories.  相似文献   

4.
The tree inventory in orchards is of great interest for orchard management and for government insurance plans. However, the conventional inventory is time‐consuming and expensive. Here a remote sensing method is introduced for orchard inventory. Airborne LIDAR (light detection and ranging) data were employed to obtain tree topography, and multispectral images were used as a reference. LIDAR vector data were converted to raster data for tree crown delineating purpose and in order to be easily superimposed on multispectral data in the same database. A tree crown delineation model was developed using a tree height image derived from the difference between canopy and ground LIDAR altitudes. The number of trees was computed from the delineation model. Spatially separated trees were precisely counted by fine definition of their crowns. For larger trees, although they have irregular crown form, like multi‐tops, holes in the centre or overlapped branches, the model developed in this study provided reliable results for crown delineation.  相似文献   

5.
The objectives of this study were to quantify and analyze differences in laser height and laser intensity distributions of individual trees obtained from airborne laser scanner (ALS) data for different canopy conditions (leaf-on vs. leaf-off) and sensors. It was also assessed how estimated tree height, stem diameter, and tree species were influenced by these differences. The study was based on 412 trees from a boreal forest reserve in Norway. Three different ALS acquisitions were carried out. Leaf-on and leaf-off data were acquired with the Optech ALTM 3100 sensor, and an additional leaf-on dataset was acquired using the Optech ALTM 1233 sensor. Laser echoes located within the vertical projection of the tree crowns were attributed to different echo categories (“first echoes of many”, “single echoes”, “last echoes of many”) and analyzed. The most pronounced changes in laser height distribution from leaf-on to leaf-off were found for the echo categories denoted as “single” and “last echoes of many” where the distributions were shifted towards the ground under leaf-off conditions. The most pronounced change in the intensity distribution was found for “first echoes of many” where the distribution was extremely skewed towards the lower values under leaf-off conditions compared to leaf-on. Furthermore, the echo height and intensity distributions obtained for the two different sensors also differed significantly. Individual tree properties were estimated fairly accurately in all acquisitions with RMSE ranging from 0.76 to 0.84 m for tree height and from 3.10 to 3.17 cm for stem diameter. It was revealed that tree species was an important model term in both and tree height and stem diameter models. A significantly higher overall accuracy of tree species classification was obtained using the leaf-off acquisition (90 vs. 98%) whereas classification accuracy did not differ much between sensors (90 vs. 93%).  相似文献   

6.
Methods for using airborne laser scanning (also called airborne LIDAR) to retrieve forest parameters that are critical for fire behavior modeling are presented. A model for the automatic extraction of forest information is demonstrated to provide spatial coverage of the study area, making it possible to produce 3-D inputs to improve fire behavior models.The Toposys I airborne laser system recorded the last return of each footprint (0.30-0.38 m) over a 2000 m by 190 m flight line. Raw data were transformed into height above the surface, eliminating the effect of terrain on vegetation height and allowing separation of ground surface and crown heights. Data were defined as ground elevation if heights were less than 0.6 m. A cluster analysis was used to discriminate crown base height, allowing identification of both tree and understory canopy heights. Tree height was defined as the 99 percentile of the tree crown height group, while crown base height was the 1 percentile of the tree crown height group. Tree cover (TC) was estimated from the fraction of total tree laser hits relative to the total number of laser hits. Surface canopy (SC) height was computed as the 99 percentile of the surface canopy group. Surface canopy cover is equal to the fraction of total surface canopy hits relative to the total number of hits, once the canopy height profile (CHP) was corrected. Crown bulk density (CBD) was obtained from foliage biomass (FB) estimate and crown volume (CV), using an empirical equation for foliage biomass. Crown volume was estimated as the crown area times the crown height after a correction for mean canopy cover.  相似文献   

7.
The objective of this study was to identify candidate features derived from airborne laser scanner (ALS) data suitable to discriminate between coniferous and deciduous tree species. Both features related to structure and intensity were considered. The study was conducted on 197 Norway spruce and 180 birch trees (leaves on conditions) in a boreal forest reserve in Norway. The ALS sensor used was capable of recording multiple echoes. The point density was 6.6 m− 2. Laser echoes located within the vertical projection of the tree crowns, which were assumed to be circular and defined according to field measurements, were attributed to three categories: “first echoes of many”, “single echoes”, or “last echoes of many echoes”. They were denoted FIRST, SINGLE, and LAST, respectively. In tree species classification using ALS data features should be independent of tree heights. We found that many features were dependent on tree height and that this dependency influenced selection of candidate features. When we accounted for this dependency, it was revealed that FIRST and SINGLE echoes were located higher and LAST echoes lower in the birch crowns than in spruce crowns. The intensity features of the FIRST echoes differed more between species than corresponding features of the other echo categories. For the FIRST echoes the intensity values tended to be higher for birch than spruce. When using the various features for species classification, maximum overall classification accuracies of 77% and 73% were obtained for structural and intensity features, respectively. Combining candidate features related to structure and intensity resulted in an overall classification accuracy of 88%.  相似文献   

8.
Identifying species of individual trees using airborne laser scanner   总被引:2,自引:0,他引:2  
Individual trees can be detected using high-density airborne laser scanner data. Also, variables characterizing the detected trees such as tree height, crown area, and crown base height can be measured. The Scandinavian boreal forest mainly consists of Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.), and deciduous trees. It is possible to separate coniferous from deciduous trees using near-infrared images, but pine and spruce give similar spectral signals. Airborne laser scanning, measuring structure and shape of tree crowns could be used for discriminating between spruce and pine. The aim of this study was to test classification of Scots pine versus Norway spruce on an individual tree level using features extracted from airborne laser scanning data. Field measurements were used for training and validation of the classification. The position of all trees on 12 rectangular plots (50×20 m2) were measured in field and tree species was recorded. The dominating species (>80%) was Norway spruce for six of the plots and Scots pine for six plots. The field-measured trees were automatically linked to the laser-measured trees. The laser-detected trees on each plot were classified into species classes using all laser-detected trees on the other plots as training data. The portion correctly classified trees on all plots was 95%. Crown base height estimations of individual trees were also evaluated (r=0.84). The classification results in this study demonstrate the ability to discriminate between pine and spruce using laser data. This method could be applied in an operational context. In the first step, a segmentation of individual tree crowns is performed using laser data. In the second step, tree species classification is performed based on the segments. Methods could be developed in the future that combine laser data with digital near-infrared photographs for classification with the three classes: Norway spruce, Scots pine, and deciduous trees.  相似文献   

9.
The overall goal of this study was to develop methods for assessing crown base height for individual trees using airborne lidar data in forest settings typical for the southeastern United States. More specific objectives are to: (1) develop new lidar-derived features as multiband height bins and processing techniques for characterizing the vertical structure of individual tree crowns; (2) investigate several techniques for filtering and analyzing vertical profiles of individual trees to derive crown base height, such as Fourier and wavelet filtering, polynomial fit, and percentile analysis; (3) assess the accuracy of estimating crown base height for individual trees, and (4) investigate which type of lidar data, point frequency or intensity, provides the most accurate estimate of crown base height. A lidar software application, TreeVaW, was used to locate individual trees and to obtain per tree measurements of height and crown width. Tree locations were used with lidar height bins to derive the vertical structure of tree crowns and measurements of crown base height. Lidar-derived crown base heights of individual trees were compared to field observations for 117 trees, including 94 pines and 23 deciduous trees. Linear regression models were able to explain up to 80% of the variability associated with crown base height for individual trees. Fourier filtering used for smoothing the vertical crown profile consistently provided the best results when estimating crown base height.  相似文献   

10.
Automated methods for capturing geometric and spectral properties of individual tree crowns are becoming increasingly viable options for use in natural resource planning. Crown isolation techniques are needed that are capable of adapting to the changing availability and resolutions of remotely sensed data. Data integration, or the fusion of two distinct data entities, offers a methodological framework that can compensate for the shortcomings of individual datasets while enhancing their desirable features. This study sought to develop a method of data integration for high-resolution optical images of varying spatial and temporal resolutions to improve the automatic detection and delineation of individual tree crowns. A marker-controlled watershed segmentation (MCWS) algorithm was developed for a 30-cm-per-pixel-side airborne colour infrared (CIR) digital image of a leaf-on apple (Malus spp.) orchard. Three methods of obtaining the markers needed for the MCWS algorithm were tested: (1) manual marker selection, (2) template/correlation selection using the 30-cm CIR image, and (3) template/correlation selection using a 15-cm-per-pixel-side true (TRU) colour leaf-off aerial image. The effectiveness of integrating marker data of different temporal and spatial resolutions with the segmentation process of the CIR image scene was tested. A comparison of crown isolation results using markers derived within the segmented 30-cm CIR digital imagery with results from markers derived from the 15-cm TRU image scene indicated greater accuracies to detect and isolate tree crowns with data integration.  相似文献   

11.
Although simple geometrical shapes are commonly used to describe tree crowns, computational geometry enables calculation of the individual crown properties directly from airborne lidar point clouds. Our objective was to calculate crown volumes (CVs) using this technique and validate the results by comparing them with field-measured values and modelled ellipsoidal crowns. The CVs of standing trees were obtained by measuring the crown radii at different heights, integrating the obtained crown profiles as solids of revolution, and finally averaging the volumes obtained from the four separate profiles. With the lidar data, the CVs were extracted using 3D alpha shape and 3D convex hull techniques. Crown base heights (CBHs) were also estimated from the lidar data and used to exclude echoes from the understory, which was also done using field-based CBHs to exclude this error source. The results show that the field-measured CVs had a high correlation with lidar-based estimates (best R 2 = 0.83), but the lidar-based estimates were generally smaller than the field values. The best correspondence (root mean square difference (RMSD) = 45.0%, average difference = –24.7%) was obtained using the convex hull of the point data and field-measured CBH. The CBHs were consistently overestimated (RMSD = 37.3%; average difference = –20.0%), especially in spruces with long crowns. Thus using lidar-based CBH also increased the inaccuracy of the CV estimates. While the underestimation of CV is mainly explained by the inadequate number of echoes from the lower regions of the crowns, the CVs obtained from the lidar were better than those obtained with ellipsoids fitted by using general models for crown dimensions. The utility of the estimated CVs in the prediction of stem diameter is also demonstrated.  相似文献   

12.
13.
In this article, a novel method is proposed for three-dimensional (3D) canopy surface reconstruction of trees using a region-based level set method. Both individual tree crowns and clusters of trees are first marked for further exploration. Multiple horizontal slices corresponding to different heights are obtained. The 3D structure of tree canopy is built using raw data from lidar point clouds. Also, new applications are proposed based on the new method for 3D forest reconstruction. The biomass parameters of the forest, including tree intersection area, tree equivalent crown radius, and canopy volume, can be calculated from stacking 2D slices of trees. Tree types are also identified and classified. The results indicate that this approach is effective for 3D surface reconstruction of forests including individual trees and clusters of trees, and that critical forest parameters (such as tree intersection area, tree position, and canopy volume) can be derived for the evaluation and measurement of biophysical parameters of forests.  相似文献   

14.
Within Australia, the discrimination and mapping of forest communities has traditionally been undertaken at the stand scale using stereo aerial photography. Focusing on mixed species forests in central south-east Queensland, this paper outlines an approach for the generation of tree species maps at the tree crown/cluster level using 1 m spatial resolution Compact Airborne Spectrographic Imager (CASI; 445.8 nm–837.7 nm wavelength) and the use of these to generate stand-level assessments of community composition. Following automated delineation of tree crowns/crown clusters, spectral reflectance from pixels representing maxima or mean-lit averages of channel reflectance or band ratios were extracted for a range of species including Acacia, Angophora, Callitris and Eucalyptus. Based on stepwise discriminant analysis, classification accuracies of dominant species were greatest (87% and 76% for training and testing datasets; n = 398) when the mean-lit spectra associated with a ratio of the reflectance (ρ) at 742 nm (ρ742) and 714 nm (ρ714) were used. The integration of 2.6 m HyMap (446.1 nm–2477.8 nm) spectra increased the accuracy of classification for some species, largely because of the inclusion of shortwave infrared wavebands. Similar increases in accuracy were achieved when classifications of field spectra resampled to CASI and HyMap wavebands were compared. The discriminant functions were applied subsequently to classify crowns within each image and produce maps of tree species distributions which were equivalent or better than those generated through aerial photograph interpretation. The research provides a new approach to tree species mapping, although some a priori knowledge of the occurrence of broad species groups is required. The tree maps have application to biodiversity assessment in Australian forests.  相似文献   

15.
Delineation of individual deciduous trees with Light Detection and Ranging (LiDAR) data has long been sought for accurate forest inventory in temperate forests. Previous attempts mainly focused on high-density LiDAR data to obtain reliable delineation results, which may have limited applications due to the high cost and low availability of such data. Here, the feasibility of individual deciduous tree delineation with low-density LiDAR data was examined using a point-density-based algorithm. First a high-resolution point density model (PDM) was developed from low-density LiDAR point cloud to locate individual trees through the horizontal spatial distribution of LiDAR points. Then, individual tree crowns and associated attributes were delineated with a 2D marker-controlled watershed segmentation. Additionally, the PDM-based approach was compared with a conventional canopy height model (CHM) based delineation. The results demonstrated that the PDM-based approach produced an 89% detection accuracy to identify deciduous trees in our study area. The tree attributes derived from the PDM-based algorithm explained 81% and 83% of tree height and crown width variations of forest stands, respectively. The conventional CHM-based tree attributes, on the other hand, could explain only 71% and 66% of tree height and crown width, respectively. Our results suggest that the application of the PDM-based individual tree identification in deciduous forests with low-density LiDAR data is feasible and has relatively high accuracy to predict tree height and crown width, which are highly desired in large-scale forest inventory and analysis.  相似文献   

16.
ABSTRACT

Riparian forests are valuable environments delivering multiples ecological services. Because they face both natural and anthropogenic constraints, riparian forests need to be accurately mapped in terms of genera/species diversity. Previous studies have shown that the Airborne Laser Scanner (ALS) data have the potential to classify trees in different contexts. However, an assessment of important features and classification results for broadleaved deciduous riparian forests mapping using ALS remains to be achieved. The objective of this study was to estimate which features derived from ALS data were important for describing trees genera from a riparian deciduous forest, and provide results of classifications using two Machine Learning algorithms. The procedure was applied to 191 trees distributed in eight genera located along the Sélune river in Normandy, northern France. ALS data from two surveys, in the summer and winter, were used. From these data, trees crowns were extracted and global morphology and internal structure features were computed from the 3D points clouds. Five datasets were established, containing for each one an increasing number of genera. This was implemented in order to assess the level of discrimination between trees genera. The most discriminant features were selected using a stepwise Quadratic Discriminant Analysis (sQDA) and Random Forest, allowing the number of features to be reduced from 144 to 3–9, depending on the datasets. The sQDA-selected features highlighted the fact that, with an increasing number of genera in the datasets, internal structure became more discriminant. The selected features were used as variables for classification using Support Vector Machine (SVM) and Random Forest (RF) algorithms. Additionally, Random Forest classifications were conducted using all features computed, without selection. The best classification performances showed that using the sQDA-selected features with SVM produced accuracy ranging from 83.15% when using three genera (Oak, Alder and Poplar). A similar result was obtained using RF and all features available for classification. The latter also achieved the best classification performances when using seven and eight genera. The results highlight that ML algorithms are suitable methods to map riparian trees.  相似文献   

17.
18.
基于多源遥感数据的城市森林树种分类对城市森林资源调查、森林健康状况评价及科学化管理具有重要意义。以江苏省常熟市虞山国家森林公园内的典型城市森林树种为研究对象,利用同期获取的机载激光雷达(LiDAR)和高光谱数据,针对5个典型城市森林树种进行了树种分类的研究。首先,基于点云距离判断单木分割方法进行单木位置和冠幅提取,并借助实测数据和目视解译结果进行精度验证;然后,在冠幅内提取4组高光谱特征变量,并借助随机森林模型对特征变量进行重要性分析;最后,筛选出重要性高的特征变量进行2个级别的树种分类并借助混淆矩阵进行验证评价。结果表明:基于点云距离判断分割方法的单木位置提取精度较高(探测率为85.7%,准确率为96%,总体精度为90.9%);利用全部特征变量(n=36)对5个树种进行分类,分类的总体精度达到了84%,Kappa系数为0.80;利用优选特征变量(n=9)进行分类,总体精度达83%,Kappa系数为0.79;利用全部特征变量(n=36)对两种森林类型进行分类,分类的总体精度达91.3%,Kappa系数为0.82,其中阔叶树种分类精度为95.6%,针叶树种分类精度为85%;利用优选特征变量(n=9)进行分类,分类的总体精度达90.7%,Kappa系数为0.80,其中阔叶树种分类精度为93.33%,针叶树种分类精度为86.67%。  相似文献   

19.
Aboveground forest biomass and carbon estimation at landscape scale is crucial for implementation of REDD+ programmes. This study aims to upscale the forest carbon estimates using GeoEye-1 image and small footprint lidar data from small areas to a landscape level using RapidEye image. Species stratification was carried out based on the spectral separability curve of GeoEye-1 image, and comparison of mean intensity and mean plot height of the trees from lidar data. GeoEye-1 image and lidar data were segmented using region growing approach to delineate individual tree crowns; and the segmented crowns (CPA) of tree were further used to establish a relationship with field measured carbon and total trees’ height. Carbon stock measured from field, individual tree crown (ITC) segmentation approach and area-based approach (ABA) was compared at plot level using one-way ANOVA and post hoc Tukey comparison test. ITC-based carbon estimates was used to establish a relationship with spectral reflectance of RapidEye image variables (NDVI, RedEdge NDVI, PC1, single band of RedEdge, and NIR) to upscale the carbon at landscape level. One-way ANOVA resulted in a highly significant difference (p-value < 0.005) between the mean plot height and lidar intensity to stratify Shorea robusta and Other species successfully. ITC carbon stock estimation models of two major tree species explained about 88% and 79% of the variances, respectively, at 95% confidence level. The ABA estimated carbon was highly correlated (R2 = 0.83, RMSE = 20.04) to field measured carbon with higher accuracy than the ITC estimated carbon. A weak relationship was observed between the carbon stock and the RapidEye image variables. However, upscaling of carbon estimates from ABA is likely to improve the relationship of the RapidEye variables rather than upscaling the carbon estimates from ITC approach.  相似文献   

20.
The decision tree-based classification is a popular approach for pattern recognition and data mining. Most decision tree induction methods assume training data being present at one central location. Given the growth in distributed databases at geographically dispersed locations, the methods for decision tree induction in distributed settings are gaining importance. This paper describes one such method that generates compact trees using multifeature splits in place of single feature split decision trees generated by most existing methods for distributed data. Our method is based on Fisher's linear discriminant function, and is capable of dealing with multiple classes in the data. For homogeneously distributed data, the decision trees produced by our method are identical to decision trees generated using Fisher's linear discriminant function with centrally stored data. For heterogeneously distributed data, a certain approximation is involved with a small change in performance with respect to the tree generated with centrally stored data. Experimental results for several well-known datasets are presented and compared with decision trees generated using Fisher's linear discriminant function with centrally stored data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号