首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用球磨和表面改性方法制备了复合储氢材料Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.75-15wt%La1.5Mg0.5Ni6.7Al0.3。研究和分析表明,钒基Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.7铸态合金由bcc结构固溶体相和六方晶系C14型Laves相构成三维网状组织,球磨改性后钒基合金与La1.5Mg0.5Ni6.7Al0.3之间并未发生合金化反应。电化学性能研究表明,经球磨改性后复合材料Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.75-15wt%La1.5Mg0.5Ni6.7Al0.3能明显增加合金的电极放电容量。铸态钒基合金和球磨复合材料均具有良好的电化学循环稳定性,其中球磨1h后电极最大放电容量为300.1mA/g,经100次循环后的电化学容量保持率为97.2%,球磨5h后试样的循环稳定性高达99%。  相似文献   

2.
Ti/Zr对一种贮氢合金容量与相结构的影响   总被引:1,自引:0,他引:1  
研究了2种不同Ti/Zr比例的Ti/Zr-V-Mn-Ni-Cr系多元AB2型贮氢电极合金A(Ti0.7Zr0.3V0.2Mn0.4Ni0.9Cr0.5)和B(Ti0.5Zr0.5V0.2Mn0.4Ni0.9Cr0.5)的电化学放电容量与合金相结构关系.2种合金的电化学循环稳定性都很好,但是合金A的放电容量明显高于合金B.2种合金均由C14 Laves相和TiNi相构成,A的主要组成相是TiNi,而B的主要组成相是C14 Laves.合金的贮氢量主要取决于TiNi相的含量,由于TiNi相的贮氢容量较低,所以该合金的贮氢容量也很低,并且由于合金B中TiNi相的含量低于合金A,所以B的放电容量也低于A.  相似文献   

3.
研究了Mn替代Ni对La2Mg0.9Al0.1Ni7.5-xCo1.5Mnx(x=0,0.3,0.6,0.9)贮氢合金相结构和电化学性能的影响。XRDRietveld全谱拟合分析表明:Mn替代改变了合金的物相组成和物相的丰度。LaNi3相消失,αLa2Ni7相丰度的变化表现为先增加(x=0,0.3)后减少(x=0.6,0.9),LaMgNi4相和La5Ni19相的丰度则随合金中Mn含量x的增加而增加。Mn替代Ni降低了合金的贮氢容量、最大电化学放电容量和活化性能,La2Mg0.9Al0.1Ni7.2Co1.5Mn0.3合金电极表现出最好的电化学循环稳定性,合金的高倍率放电性能随Mn含量的增加降低,这归因于交换电流密度(I0)和氢扩散系数(D)的降低。  相似文献   

4.
采用电化学测试技术、X射线衍射等技术研究了Ti0.8Zr0.2V1.6Mn0.8Ni0.6(0≤x≤0.64)贮氢电极合金的结构和电化学放电特性。研究表明:合金由C14 Laves相和BCC相构成;铬替代锰的量越多,枝晶组织越粗大。X射线衍射发现替代影响合金的晶格参数。合金的最大电化学放电容量为545mAh/g,电化学活化容易,但循环性能比较差。随着替代量增大,由于铬抑制了钛、锆和钒元素的表面迁移和氧化使合金的循环性能退化明显减轻,但同时因为替代使晶胞过大导致最大电化学放电容量有所降低。  相似文献   

5.
制备了新能源汽车零部件储氢电池用Mg2Ni和Mg1.7Al0.2Ti0.1Ni0.8Cr0.2镁合金,并进行了显微组织、物相组成、充放电性能和耐腐蚀性能的测试。结果表明,与未添加合金元素的Mg2Ni合金相比,Mg1.7Al0.2Ti0.1Ni0.8Cr0.2合金的放电容量最大值从126 m Ah/g增加至768 m Ah/g;20次充放电循环后放电容量的衰减率下降78.44%,腐蚀电位正移251m V,Mg1.7Al0.2Ti0.1Ni0.8Cr0.2合金的充放电性和耐腐蚀性得到显著提高。  相似文献   

6.
采用感应熔炼方法制备了A2B7型La0.75Mg0.25Ni3.5-xAlx(x=0,0.02,0.06 0.1,0.3)四元贮氢合金,系统研究了Al元素部分替代Ni对A2B7型La0.75Mg0.25Ni3.5合金相结构及电化学性能的影响。X射线衍射(XRD)分析表明:La0.75Mg0.25Ni3.5由单一La2Ni7相组成:Al元素加入后,开始出现CaCu5型LaNi5相,当x=0.3时,LaNis相成为合金的主相。Rietveld分析表明:随着Al含量的增加,LaNi5相逐渐增多,Al的加入利于CaCu5型LaNi5相的形成。电化学测试表明:Al替代Ni对A2B7型合金La0.75Mg0.25Ni3.5电极活化性能影响不大:而最大放电容量随Al在La0.75Mg0.25Ni3.5-xAlx,合金中替代量的增加而减小。当放电电流密度为1600mA/g时,合金的倍率放电性能由68.8%(x=0)增加到81.16%(x=0.1)然后减小到65.67%(x=0.3)。此外,La0.75Mg0.25Ni3.5-xAlx合金电极循环稳定性先增加而后下降。x=0.06时合金电极容量保持率最大(S100=85.21.%)。  相似文献   

7.
La0.67Mg0.33Ni2.5Co0.5贮氢合金的制备和MH电极性能研究   总被引:9,自引:0,他引:9  
采用高频感应熔炼方法制备了PuNi3型La0.67Mg0.33Ni2.5Co0.5合金;用X射线衍射分析和电化学方法研究了添加不同Mg含量以补偿Mg元素烧损时合金的组织结构和电化学性能。X射线衍射分析(XRD)表明,铸态合金由.PuNi3型主相和少量的CaCu5型第二相组成,铸态合金经1223K和10h退火处理后,CaCu5型第二相可明显减少,其中Mg增加10%时得到纯度较高的PuNi3型组织。电化学测试表明,增加适当Mg含量和进行退火热处理能明显提高和改善合金电极容量、循环稳定性和大电流放电性能。与AB5型和。482型Laves相贮氢合金比较,PuNi3型La0.67Mg0.33Ni2.5Co0.5贮氢合金具有电极容量高及优良的大电流放电性能。  相似文献   

8.
在制备La-Ni-Co-Fe中间合金的基础上,采用机械合金化方法制备La0.7Mg03Ni2.8C005-xFex(x=0,0.1,0.2,0.3,0.4,0.5)系列储氢合金,研究在不同球磨时间下储氢合金的物相、微观形貌和电化学性能及元素置换对其储氢性能的影响.结果表明La0.7Mg0.3Ni2.8Co0.5合金的主相为LaNi5相,La0.7Mg0.3Ni2.8Co0.5-xFex系列储氢合金球磨40h和80h后,主相为LaNi5相和少量LaMg2Ni9相;且随着球磨时间的增加,合金晶粒变细小,La0.7Mg03Ni2.8Co0.5合金的最大放电容量呈变大的趋势,从142.4mA.h/g增加到157.5mA.h/g,La0.7Mg0.3Ni2.8Co0.2Fe0.3合金的最大放电容量从150.7mA·h/g增加到162.1mA·h/g,合金具有较好的循环稳定性能.  相似文献   

9.
研究333 K时Ti0.17Zr0.08V0.35Cr0.1Ni0.3 合金的循环稳定性和高温倍率放电性能。333 K时,当放电电流密度为60 mA/g时,Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金第1次放电容量为450 mAh/g。随着充放电循环的进行,放电容量迅速降低。当放电电流密度为2400 mA/g,截止电压为0.6 V时,Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金的放电容量仍达到160 mAh/g。并详细探讨影响以上合金电化学性能的因素  相似文献   

10.
采用传统的固相烧结法合成了0.2Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr0.5,Ti0.5)O3(1-x)(Ni51.5Mn25Ga23.5)x复合体系陶瓷。XRD结果表明,随着Ni51.5Mn25Ga23.5(NMG)掺入,Ni51.5Mn25Ga23.5先溶于0.2Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr0.5,Ti0.5)O3中,后NMG量超过5%不溶于复合体系中,使得0.2Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr0.5,Ti0.5)O3的峰位向右偏移;铁电性能测试结果表明,0.2Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr0.5,Ti0.5)O3(1-x)(Ni51.5Mn25Ga23.5)x复合体系陶瓷随着Ni51.5Mn25Ga23.5的掺入量的增加矫顽场E先降低后增加,剩余极化强度Pr逐渐降低,这与XRD的测试结果相一致;磁性测试结果表明,0.2Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr0.5,Ti0.5)O3(1-x)(Ni51.5Mn25Ga23.5)x随着Ni51.5Mn25Ga23.5掺入量的增加,以独立相析出在复合体系中,剩余磁化强度Mr逐渐增大。  相似文献   

11.
在对合金微观结构和储氢性能研究的基础上,详细考察了少量Zr取代Ti对Ti19.5V40Mn16.2Cr9.8Ni14.5合金电化学性能的影响。通过观察电极的充放电行为,并结合EIS及多种极化曲线的分析结果,发现少量Zr对Ti的取代能够显著提高合金电极的实际电化学容量和循环稳定性,而且还能在一定程度上改善合金的电极动力学性能。对于这些性能的改善,从合金微观结构方面进行了解释。  相似文献   

12.
用铸造及快淬工艺制备了A2B7型电极合金,合金的名义成分为La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1 (x = 0, 0.05, 0.1, 0.15, 0.2)。深入研究了Zr替代La对合金微观结构及电化学性能的影响。用XRD、SEM、TEM分析了合金的结构。结果表明,铸态及快淬态合金均具有多相结构,含有两个主相(La,Mg)Ni3和LaNi5以及一个残余相LaNi2。Zr替代La使合金中LaNi5相明显增加,并促进快淬态合金中形成非晶相。电化学测试的结果表明,Zr替代La明显降低合金的放电容量,但显著改善合金的电化学循环稳定性。当Zr含量小于0.1时,合金的放电容量随淬速的增加而先增加后减小,合金的循环稳定性随淬速的增加而单调增加。  相似文献   

13.
在制备La-Ni-Co-Fe中间合金的基础上,采用机械合金化方法制备La0.7Mg0.3Ni2.8Co0.5-xFex(x=0,0.1,0.2,0.3,0.4,0.5)系列储氢合金,研究在不同球磨时间下储氢合金的物相、微观形貌和电化学性能及元素置换对其储氢性能的影响。结果表明:La0.7Mg0.3Ni2.8Co0.5合金的主相为LaNi5相,La0.7Mg0.3Ni2.8Co0.5-xFex系列储氢合金球磨40 h和80 h后,主相为LaNi5相和少量LaMg2Ni9相;且随着球磨时间的增加,合金晶粒变细小,La0.7Mg0.3Ni2.8Co0.5合金的最大放电容量呈变大的趋势,从142.4 mA.h/g增加到157.5 mA.h/g,La0.7Mg0.3Ni2.8Co0.2Fe0.3合金的最大放电容量从150.7mA.h/g增加到162.1mA.h/g,合金具有较好的循环稳定性能。  相似文献   

14.
采用感应熔炼方法制备La0.75Mg0.25Ni3.5-xMnx(x=0,0.05,0.1,0.15,0.2)四元贮氢合金,系统地研究合金B侧Mn对Ni部分替代对合金相结构及电化学性能的影响。XRD分析表明,La0.75Mg0.25Ni3.5-xMnx由La2Ni7相(包括Gd2Co7型高温相和Ce2Ni7型低温相)组成。此外,Mn的加入,使该类合金中出现LaNi5相,但是在含Mn量较高(x=0.15,0.2)的合金中LaNi5相消失。电化学测试表明,随Mn含量的增加,合金电极活化次数变化不大,合金电极的最大放电容量减小,高倍率放电性能、交换电流密度变差,循环稳定性、极限电流密度均得到明显的改善。  相似文献   

15.
采用铜模喷铸法制备了Mg60Ni23.6Y0.5La15.9块体非晶合金,并对其微观组织结构及电化学性能进行了研究。用XRD和SEM对Mg60Ni23.6Y0.5La15.9非晶合金在充放电过程中的微观结构进行分析。采用自动充放电测试系统对Mg60Ni23.6Y0.5La15.9非晶合金电化学性能进行了测试。结果表明:在吸氢放氢过程中合金的非晶态结构逐步转变为晶态,并且随着循环的进行逐渐形成了Mg2Ni H4、Mg2Ni和Mg(OH)2相。电化学性能测试结果表明:Mg60Ni23.6Y0.5La15.9非晶合金电极的放电容量变化过程可以分为4个阶段,其最大放电容量达到410.5m Ah/g,从而说明非晶结构有可能是非晶电极达到最大放电容量的关键因素。  相似文献   

16.
掺Cr纳米晶Mg2 Ni合金的气态储氢性能   总被引:5,自引:5,他引:5  
纳米晶MgNi1-xCrx(x=0,0.1,0.2,0.3)合金由纯Mg、Ni、Cr粉在500℃经3h烧结后机械球磨而成。在210℃吸氢、250℃放氢的条件下,添加Cr后合金的最大吸放氢量明显提高;纳米Mg2Ni0.8Cr0.2合金的气态储氢量和吸氢动力学性能较好,第一次放氢量就达到3.0%,并且循环稳定性良好,吸氢后生成Mg2NiH4、Mg2NiH0.24相。纳米Mg2Ni0.7Cr0.3合金的放氢量在不经过活化的条件下便达到最大值,然而循环稳定性差,这是由于循环过程中有MgH2生成而造成的。  相似文献   

17.
研究了元素Ti对贮氢电极合金ZrMn0.7V0.2Co0.1Ni1.2的相结构、相组成以及电化学性能的影响。结果表明,对于合金Zr1-xTix(Mn0.7V0.2Co0.1Ni1.2),其母体合金的主相为C15型Laves相,并含有少量的非Laves相Zr7M10;但随着掺Ti量的增加,合金中出现C14型Laves相,而且其含量逐渐增加;在x=0.1~0.2时,合金中还出现少量的TiNi相,而在x=0.4~0.5时,非Laves相Zr7M10和TiNi相全部消失,说明元素Ti大量的掺杂抑制了第二相的产生:而且随着Ti含量的增加,合金中的C15型和C14型Laves相的晶格常数逐渐减小。电化学测试结果发现,当含Ti量x=0.2时,合金有最大放电容量Cmax为354mAh/g,在放电电流为300mAh/g条件下,高倍率放电性能比母体合金提高了15%。  相似文献   

18.
研究了机械球磨La1.8Ca0.2Mg14Ni3+x%Ti(质量分数,下同)(x=0,5,10)合金的微结构和储氢性能。气态吸放氢研究表明。加入钛粉球磨能有效提高合金的活化性能、储氢容量和吸放氢速率。铸态合金经过6次活化后,在613K时放氢量为4.12%(质量分数,下同)。加Ti球磨改性10h后,随着X增加,合金经过2次~3次循环基本完全活化。吸放氢性能也相应提高。Ti含量在x=0,5,10时合金在613K的放氢量分别为4.69%,4.80%,4.83%:当x=10时合金在373K的吸氢量达到3%以上,在600K经过2min就能达到4.81%(为最大吸氢量的97%)。微结构分析表明。具有表面催化活性的Ti粉与合金基体表面进行复合,并使合金发生部分非晶转变,能有效改善La1.8Ca0.2Mg14Ni3合金的储氢性能。  相似文献   

19.
研究了退火温度对A287型La1.5Mg0.5Ni7.0合金的相结构和电化学性能的影响。结果表明:铸态合金由LaNi,相、LaMgNi4相、(La,Mg)Ni3相以及Gd2Co7型相组成,退火处理后,合金由Gd2Co7型相、Ce2Ni7型相和PuNi3型(La,Mg)Ni3相组成:随着退火温度升高,PuNi3型相的丰度减小,ce2Ni7型相的丰度增加,(La,Mg)Ni3相的a轴参数、c轴参数和晶胞体积均增大;经1073K保温24h退火后,合金电极具有最高的放电容量(391.2mAh/g),退火温度升高,合金的最大放电容量略有降低:合金电极的循环稳定性随着退火温度的升高不断提高,在1173K时合金电极经150次循环后其电极容量保持率C150/Cmax=82%;合金的高倍率放电性能(HRD)随退火温度升高略有增加,在1173K时,合金电极的HRD最好(HRD900=89.0%);交换电流密度I0、极限电流密度I1及氢扩散系数D随着退火温度的升高而增大。  相似文献   

20.
纳米晶Mg2-xTixNi0.8Cr0.2四元合金的气态储氢性能   总被引:1,自引:1,他引:1  
纳米晶Mg2-xTixNi0.8Cr0.2(x=0.05,0.10,0.15,0.20)四元合金由纯Mg,Ti,Ni,Cr粉在773 K经4h烧结后机械球磨而成.该合金具有良好的活化性能和吸氢动力学性能.合金在393 K,4.0 MPa氢压条件下,2min内便可以完成总吸氢量的75%(质量分数)以上,Mg1.95Ti0.05Ni0.8C0.2最大吸氢量可达到3.35%.在493 K,0.1 MPa条件下可快速放氢,Mg1.80Ti0.20Ni0.8Cr0.2在18 min内便可完成放氢过程,总放氢量为2.17%.所有合金具有良好的低温吸氢性能,353 K时Mg1.85Ti0.15Ni0.8Cr0.2合金最大吸氢量可达到2.08%.XRD分析结果显示,Ti替代Mg后,合金中主要存在Mg2Ni与Ni两相,另外,还有微量的Mg与TiNi相,TiNi相弥散分布在合金中,对合金的吸放氢性能有一定的催化作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号