首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 236 毫秒
1.
钽酸锂中杂质元素含量是划分产品等级的重要参数。样品中加入硝酸和氢氟酸后用微波消解法溶解样品,在线加入1.00 μg/mL的Cs内标溶液后,在H2动态反应池模式下测定Ca、Fe、As、Se,在标准模式下测定其余元素,建立了微波消解-电感耦合等离子体质谱法(ICP-MS)测定钽酸锂中Be、B、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Zr、Nb、Mo、Cd、Sb、Ba、Hf、W、Pb和Bi共28种杂质元素含量的方法。对溶样方法进行了优化,确定选用2 mL硝酸-2 mL氢氟酸体系于190 ℃保温120 min的方式微波消解样品。在优化的实验条件下,28种元素的检出限为0.003~0.37 μg/g,定量限为0.01~0.74 μg/g。采用实验方法测定市售钽酸锂样品中Mg、Al、Ca、Ti等28种杂质元素含量,测定结果的相对标准偏差(n=7)均小于5%,加标回收率为87%~112%。采用电感耦合等离子体原子发射光谱法(ICP-AES)对样品中Fe含量进行测定,测定结果与实验方法基本一致。  相似文献   

2.
微波消解-分光光度法测定钨矿中钨   总被引:2,自引:0,他引:2       下载免费PDF全文
冯忠伟 《冶金分析》2009,29(10):73-75
研究了利用微波消解技术对钨矿石样品进行消解,并采用硫氰酸盐分光光度法测定钨矿石中钨的含量。微波消解溶剂为40 mL NaOH溶液(25 g/L),微波火力为中高火,微波消解时间30 min。对各试剂用量进行了探讨,方法检出限为0.5μg/mL。对钨矿石样品进行分析,测定结果与传统溶样方法的结果相吻合,相对标准偏差小于2.3%。  相似文献   

3.
选取5 mL王水为溶剂,采用微波消解法处理锌精矿样品,以205Tl作为测定同位素,建立了电感耦合等离子体质谱法(ICP-MS)测定锌精矿中痕量Tl的定量分析方法。优化后的微波消解程序如下:消解温度为190 ℃,升温时间为20 min,消解保持时间为20 min。采用直接稀释法消除基体效应,控制测试液中固体质量浓度不大于0.5 mg/mL。实验表明,Tl质量浓度在0.10~50.00 μg/L范围内与其对应的峰强度呈良好的线性关系,校准曲线相关系数为0.999 9。方法检出限为0.001 8 μg/L,方法测定下限为0.006 μg/L。对锌精矿实际样品中的痕量Tl进行分析,测定结果与国家标准方法中泡塑富集-电感耦合等离子体原子发射光谱法(ICP-AES)测定值基本一致,相对标准偏差(RSD,n=11)均小于5%。  相似文献   

4.
选择酒石酸-氢氟酸-硝酸体系并利用微波消解处理样品,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定钨和钛,建立了微波消解-电感耦合等离子体原子发射光谱法测定废脱硝催化剂中钨和钛的方法。试验考察了消解体系及用量,优化了微波消解程序。结果表明,钨和钛的质量浓度分别为0.05~5mg/L和0.01~10mg/L与其相应的发射强度呈线性关系,相关系数分别为0.9995、0.9998,检出限分别为0.002%、0.0002%。废脱硝催化剂中铁、铝、钙、镁、钒和钼等元素对钨和钛的测定无影响。方法用于废脱硝催化剂样品中钨和钛的测定,结果的相对标准偏差(RSD,n=6)均小于3%,并与原子吸收光谱法(AAS)测定值一致。  相似文献   

5.
成勇 《冶金分析》2012,32(3):59-63
以HF、HNO3和HCl的混酸(VHF∶VHNO3∶VHCl=1∶6∶3)为消解试剂,采取斜坡升温方式,在优化的消解程序下对样品进行微波消解,消解液以水定容后采用电感耦合等离子体原子发射光谱法(ICP AES)测定Si、Al、Mn、P、Cu、Co、Cr、Ni、V、As、Cd、Pb、Ca、Mg等14种杂质元素含量。考察了样品的最佳消解条件和光谱干扰情况。结果表明,样品采用以5 min升温至130 ℃并保持3 min,再以5 min升温至200 ℃并保持10 min的消解程序消解的效果最好;选择合适的光谱线作为被测元素的分析线并采用基体匹配及同步背景校正法可以消除钛基体影响和谱线的重叠干扰。方法的检出限为5 μg/L(Mg)~60 μg/L(Si),背景等效浓度为4 μg/L(Mg)~55 μg/L(Si),用于测定富钛料中上述元素, 相对标准偏差(RSD,n=8)≤65%,加标回收率在95%~108%之间。  相似文献   

6.
高纯钨广泛应用于电子信息行业,其电子特性很大程度上取决于其杂质含量,因此,有必要对高纯钨中杂质元素进行测定。通过优化辉光放电工艺参数、选择合适的同位素及分辨率,建立了辉光放电质谱法(GDMS)测定高纯钨中10种痕量杂质元素的分析方法。优化后的放电条件为:放电电流3.0 mA,放电气体流量500 mL/min,预溅射时间20 min。为提高痕量杂质元素的检测准确度,利用高纯钨标准样品对10种元素的相对灵敏度因子(RSF)进行了校正,获得了与基体匹配的RSF。方法中10种元素的检出限为0.005~0.019 μg/g,定量限为0.017~0.064 μg/g。按照实验方法测定高纯钨中10种杂质元素,并用电感耦合等离子体质谱法(ICP-MS)的测定结果作为比较以验证准确性。结果表明:样品中杂质元素的含量为0.027~155.07 μg/g,质量分数小于100 μg/g的杂质元素,其结果相对标准偏差(RSD,n=6)均小于30%;质量分数大于100 μg/g的杂质元素,其结果RSD(n=6)小于10%。除Mg、Sn、Pb低于ICP-MS的检出限外,其余各杂质元素的测试结果与ICP-MS结果基本一致。  相似文献   

7.
磷矿石中氟和氯的准确测定对评价磷矿石的利用价值有重要指导作用。采用硝酸(1+1)和过氧化氢作为消解液,于160 ℃对样品微波消解15 min,将消解液通过0.22 μm在线超滤系统,采用Metrosep A Supp 5-250/4.0阴离子色谱柱,以3.2 mmol/L碳酸钠和1.0 mmol/L碳酸氢钠缓冲溶液作为淋洗液,电导检测器测定,建立了微波消解-离子色谱法测定磷矿石中氟和氯的方法。结果表明,氟的特征峰出现时间为6.29 min,氯的特征峰出现时间为9.17 min,氟和氯在质量浓度为10.00~50.00 mg/L范围内与其相应峰面积有良好的线性关系,线性相关系数均不小于0.999 6。氟和氯的方法检出限分别为0.102 μg/L和0.162 μg/L,定量限分别为0.343 μg/L和0.540 μg/L。按照实验方法对磷矿石标准物质中氟进行测定,并加入氟单元素标准储备溶液进行加标回收试验,结果表明,氟测定结果的相对标准偏差(RSD,n=7)小于1%;氟的测定结果与认定值相符合,回收率为98%~105%。将实验方法应用于6个磷矿石样品中氟和氯的测定,结果表明,实验方法测定结果的相对标准偏差(n=7)均小于1%;实验方法测定结果分别与GB/T 1872—1995中离子选择性电极法或GB/T 9729—2007中氯化银比浊法基本一致。  相似文献   

8.
磷矿石中氟和氯的准确测定对评价磷矿石的利用价值有重要指导作用。采用硝酸(1+1)和过氧化氢作为消解液,于160 ℃对样品微波消解15 min,将消解液通过0.22 μm在线超滤系统,采用Metrosep A Supp 5-250/4.0阴离子色谱柱,以3.2 mmol/L碳酸钠和1.0 mmol/L碳酸氢钠缓冲溶液作为淋洗液,电导检测器测定,建立了微波消解-离子色谱法测定磷矿石中氟和氯的方法。结果表明,氟的特征峰出现时间为6.29 min,氯的特征峰出现时间为9.17 min,氟和氯在质量浓度为10.00~50.00 mg/L范围内与其相应峰面积有良好的线性关系,线性相关系数均不小于0.999 6。氟和氯的方法检出限分别为0.102 μg/L和0.162 μg/L,定量限分别为0.343 μg/L和0.540 μg/L。按照实验方法对磷矿石标准物质中氟进行测定,并加入氟单元素标准储备溶液进行加标回收试验,结果表明,氟测定结果的相对标准偏差(RSD,n=7)小于1%;氟的测定结果与认定值相符合,回收率为98%~105%。将实验方法应用于6个磷矿石样品中氟和氯的测定,结果表明,实验方法测定结果的相对标准偏差(n=7)均小于1%;实验方法测定结果分别与GB/T 1872—1995中离子选择性电极法或GB/T 9729—2007中氯化银比浊法基本一致。  相似文献   

9.
活性炭样品经550 ℃高温焙烧后,以硝酸、氢氟酸和盐酸的混酸作为消解试剂,用微波消解法消解,电感耦合等离子体原子发射光谱法(ICP-AES)测定消解液中铁、锌、钙、镁和铅金属元素含量。试验结果表明:样品经高温焙烧后基体元素碳已除去,对测定没有干扰,因此可以直接用待测元素的标准溶液绘制校准曲线,不需要进行基体匹配。共存元素由于含量很低,在所选定的分析线下测定也没有干扰。方法的检出限如下:铁为0.02 μg/mL,锌为0.01 μg/mL、钙为0.01 μg/mL、镁为0.02 μg/mL,铅为0.05 μg/mL。样品测定结果的相对标准偏差(RSD)在1.7%~4.1%之间(n=9),回收率在94%~96%之间。  相似文献   

10.
以氢氟酸,硝酸和过氧化氢作为消解试剂,采用逐步升温消解程序,建立了微波消解-电感耦合等离子体质谱法测定煤矸石中镉、铬、铅的方法。选择10 μg/L的Rh溶液作为内标溶液,以208Pb 、52Cr和114Cd分别作为铅、铬、镉的测定同位素,在选定的仪器工作参数下,应用建立的方法对不同地区的煤矸石样品进行测定,测定值与石墨炉原子吸收光谱法(GF-AAS)和电感耦合等离子体原子发射光谱法(ICP-AES)的测定值一致,相对标准偏差(RSD,n=5)均小于7%。方法检出限分别为:0.013 μg/g(镉)、2.00 μg/g(铬)、0.20 μg/g(铅)。  相似文献   

11.
采用硝酸和硫酸处理样品后, 在5%(体积分数)硫酸介质中, 用电感耦合等离子体原子发射光谱法(ICP-AES)测定了钕铁硼中钼、钨、铌、锆、钛的含量。基体元素铁、钕和硫酸产生的光谱干扰或基体效应采用基体匹配的方法克服, 基体元素硼和其他共存元素对测定均没有干扰。方法的测定下限分别为0.10 μg/mL(钼)、0.20 μg/mL(钨)、0.15 μg/mL(铌)、0.10 μg/mL(锆)、0.10 μg/mL(钛)。方法应用于钕铁硼样品中钼、钨、铌、锆、钛的测定, 测定结果与电感耦合等离子体质谱法的测定结果或参考值相符, 加标回收率在98%~104%之间, 相对标准偏差(RSD, n=11)小于6%。  相似文献   

12.
选择水-盐酸-氢氟酸-硝酸混合酸体系溶解样品,控制雾化气流速为0.65 L/min,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定TG6钛合金中镁、钒、铬、铁、钴、铜、锰、钼和钨的方法。考察了钛基体和共存元素对待测元素的影响,确定各待测元素分析线为Mg 285.2 nm、V 310.2 nm、Cr 283.5 nm、Fe 259.9 nm、Co 238.8 nm、Cu 213.5 nm、Mn 257.6 nm、Mo 202.0 nm、W 207.9 nm。采用基体匹配法消除了基体影响。方法检出限为0.000 3~0.005 7 μg/mL。采用方法对实际样品分析,结果的相对标准偏差为0.26%~13.6%,加标回收率为93%~110%。按照TG6钛合金的名义成分Ti-5.8Al-4Sn-4Zr-0.5Ta-0.7Nb-0.4Si-0.06C配制模拟TG6钛合金样品,实验方法测得结果与理论值基本一致。  相似文献   

13.
通常锡矿石中砷、锑含量的检测方法都是以分光光度法为主,实验以盐酸-硝酸混合酸微波消解样品,建立了氢化物发生-原子荧光光谱法测定锡矿石中砷和锑的新方法。实验表明:以8 mL盐酸-硝酸(5+3)混酸为溶剂,采用微波消解样品,在盐酸浓度约为0.96 mol/L,硫脲和抗坏血酸的质量浓度均为10 g/L时,以HCl(1+9)作为载流液,20 g/L硼氢化钾溶液为上机还原剂进行测定,以砷和锑的荧光强度与其对应的质量浓度绘制校准曲线,线性相关系数均不小于0.999 8。砷和锑的方法检出限分别为0.044 2 μg/L和0.020 4 μg/L。干扰试验表明,锡矿石样品中的共存元素不干扰测定。采用实验方法对锡矿石实际样品中砷和锑进行测定,测得结果的相对标准偏差(RSD,n=6)分别为1.1%~1.3%和0.99%~1.4%,加标回收率分别为99%~104%和98%~104%。将实验方法应用于锡矿石标准物质的测定,测定值与认定值基本一致。  相似文献   

14.
陈珍娥  张海 《冶金分析》2015,35(1):55-58
利用新型多元素测定仪的良好线性,建立了硫氰酸盐光度法测定钨精矿中三氧化钨含量的方法。对试样的熔融条件、称样量、结果的计算方法、显色剂的配制等方面进行了优化,并用管理样和生产样品验证了分析方法的准确度和精密度。结果表明,试样用过氧化钠与碳酸钠混合熔剂熔融,熔块经EDTA(20 g/L)-乙醇(5 g/L)浸取液浸取后,铁、钙、锰、铜、镍、铋等对测定没有干扰,但铌干扰测定,可用草酸溶液消除。方法用于钨精矿中三氧化钨的测定,测定值与参考值或重量法测定值相吻合,相对标准偏差(RSD,n=6)在0.12%~0.30%之间。  相似文献   

15.
采用王水和氟化铵在微波消解仪中消解样品,建立了火焰原子吸收光谱法测定铅烟灰和铅泥中银的方法。考察了溶样方法、消解试剂、微波消解程序、盐酸浓度和干扰离子对测定的影响。结果表明,以王水和氟化铵为消解试剂,采用三步消解程序即60℃、8 atm/1 min, 70℃、13 atm/2 min, 100 ℃、20 atm/3 min,效果最佳;铅泥和铅烟灰中的铜对银的测定没有影响;银浓度在0.2~10 μg/mL范围内与吸光度呈线性关系,方法检出限为0.03 μg/mL。采用本方法对铅烟灰和铅泥样品中的银进行分析,测得结果与常规溶样-原子吸收光谱法基本吻合,相对标准偏差(RSD,n=5)为1.1%~1.3%。  相似文献   

16.
利用高压密闭微波消解技术消解样品, 建立了氧化物发生原子荧光光谱法测定污水处理厂污泥中汞和砷的方法。对消解酸和消解程序进行了优化, 同时讨论了硼氢化钾浓度对测定的影响。结果表明, 选用10 mL 硝酸-盐酸(4+6)可将0.25 g污泥样品消解完全;确定消解程序如下:消解功率为850 W, 发射率为80%, 第1步采用5 min内从室温升温至110 ℃, 保持5 min, 第2步采用10 min内继续升温至180 ℃, 保持20 min;在硼氢化钾浓度为20 g/L时进行测定, 效果最佳。汞和砷的方法检出限分别为0.001 6 mg/kg和0.002 2 mg/kg。方法应用于污泥样品中汞和砷的测定, 相对标准偏差(RSD, n=6)分别为2.7 %~3.8%和1.1%~2.0%, 汞和砷的加标回收率分别为96%~102%和98%~104%。方法应用于土壤标准样品GSS-25和GSS-26中汞和砷的测定, 结果与认定值一致, 汞和砷的RSD(n=6)分别为4.5%~7.4%和2.2%~2.4%。  相似文献   

17.
以盐酸硝酸(5+3)的混酸为消解液,微波消解钨矿样品,然后采用氢化物发生原子荧光光谱法(HG-AFS)同时测定钨矿中砷和汞。对微波消解程序进行优化,并探讨了共存离子对测定砷、汞的干扰。由于钨基体在酸性消解液中形成钨酸沉淀,而实际样品中其他共存离子浓度均低于允许浓度,因此,基体和共存元素对待测元素几乎没有影响。砷、汞的测定下限分别为0.20 mg/kg和0.10 mg/kg。选择不同钨矿石进行精密度考察,相对标准偏差(RSD,n=6)在1.3%~6.2%范围内;加标回收试验表明,回收率在82%~101%之间。对钨矿石标准样品进行分析,砷的测定值与认定值一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号