首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper proposes an IPv6‐based mobility framework for urban vehicular networks. In this framework, the architecture for urban vehicular networks is presented, and based on this architecture, the IPv6 address structure for urban vehicular networks is proposed. In this framework, a vehicle is always identified by its home address and does not need to be configured with a care‐of address. Based on this architecture, the pre‐handover algorithm is presented. In this algorithm, the third‐layer (L3) mobility handover is performed before the second‐layer (L2) one. When a vehicle finishes the L3 handover but does not perform the L2 handover, the corresponding access router or border router reserves the messages destined for the vehicle. After the vehicle completes the L2 handover, the access router or border router transmits the reserved messages to the vehicle. The performance of this framework is evaluated, and the results show that this framework reduces the handover cost and delay and lowers the packet loss. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Proxy Mobile IPv6 (PMIPv6), a network-based mobility management protocol, supports multi-homing, inter-technology handover, and flow mobility, with the help of a host’s virtual interface (VI). Several single virtual interface (SVI) schemes have been proposed to support these functions. In the SVI schemes, the link-layer identifier (LL-ID) should be swapped while the host is processing neighbor discovery (ND) after inter-technology handover or flow mobility. That is, a host must replace the LL-ID of a VI contained in a neighbor advertisement with the LL-ID of a physical interface (PI) related to a real connection. Such LL-ID swapping cannot be executed under secure neighbor discovery, and it causes ND processing delay and high overhead to check all outgoing packets. In this paper, we propose a multiple virtual interfaces scheme to solve the problem related to the LL-ID swapping, and to provide good support to the inter-technology handover. In the proposed scheme, there are the same numbers of VIs as the PIs between the data link layer and the network layer of a host. Since each VI maintains its own neighbor cache, the proposed scheme does not require LL-ID swapping, so that it can keep the standard ND process. We explain the basic operation of PMIPv6 inter-technology handover under the proposed scheme and, through NS-3 simulation, evaluate the performance of the proposed scheme in terms of ND process delay and inter-technology handover latency.  相似文献   

3.
The second generation of WiMAX solutions, based on IEEE 802.16-2005 standard, offers limited mobility support. Unfortunately, after quickly changing the point of attachment on the WiMAX data link layer (DLL), very slow and inefficient IPv6 reconfiguration takes place. Delays introduced by automatic configuration (DHCPv6 and IPv6 protocols) and Mobile IPv6 can easily diminish or even render useless all benefits gained using the efficient handover performed on DLL. As handover is a crucial process in mobile cellular environments, reasons behind delays introduced by IPv6 layer mechanisms have to be analyzed and appropriate countermeasures applied. In order to analyse influence of different factors on the handover delay a simulation environment modelling the full handover procedure in a WiMAX environment has been developed. It allows simulation and analysis of various mobility related issues, offering support for multiple base stations with groups of subscribers, both fixed and mobile, with various mobility models. Also support for tight integration with higher layers (IPv6, DHCPv6, and Mobile IPv6) is fully implemented. All stages of full IPv6 handover in IEEE 802.16 environment, focusing on major reasons of reconfiguration delays are described. The paper presents components, functional requirements and architecture of the simulation environment, together with example simulation results. The obtained results clearly show that most significant delays are caused by the IPv6 layer. The areas of improvement in several autoconfiguration mechanisms are identified. Proposals include novel use of DHCPv6 relays for remote configuration, solving DAD delays, limiting Binding Update procedure in Mobile IPv6, and configuring routing through DHCPv6 communication. A universal metric for assessing impact of every stage on handover efficiency is also defined. Several proposed improvements to the IPv6 handover process are evaluated. Discussion regarding possible generalization of best improvement proposals and remarks on further research areas conclude this paper.  相似文献   

4.
A New Enhanced Fast Handover Algorithm in Hierarchical Mobile IPv6 Network   总被引:1,自引:0,他引:1  
1 Introduction MobileIPv6requirestheMobileNode (MN)toregisterwiththeHomeAgent (HA)andtheCorre spondentNode (CN)whenitchangesitspointofattachmentintheInternet[1~ 3] .Therefore ,thiscauseMobileIPv6toincurlongdelayintheregis tration process,andaddsignalingtraffictothebackbonenetworkespeciallywhentheHAandCNarefarawayfromtheMN .Inordertominimizethisdelay ,andthesignalingoverhead presentinMobileIPv6,literatures[4~7] proposeHierarchicalMobileIPv6(HMIPv6)architectureandafasthan dover…  相似文献   

5.
Handover delay performance is a critical issue to support real-time applications in wireless networks. To address this issue, this paper presents an Enhanced fast handover Triggering Mechanism (ETM) to improve the handover performance of mobile nodes (MNs) in Fast Proxy Mobile IPv6 (FPMIPv6). Making use of the information from the link layer, the ETM predicts two cases that the MNs perform in the reactive handover mode. Then, it establishes the bi-directional tunnel in advance for fast handover. As a result, the reactive handover delay is significantly reduced. Integrating the ETM into FPMIPv6 forms an enhanced Fast Proxy Mobile IPv6 (eFPMIPv6) protocol. Simulation experiments show that with the presented ETM mechanism, the eFPMIPv6 outperforms the original FPMIPv6 in terms of the overall handover performance.  相似文献   

6.
The paper proposes a hierarchical scheme on implementing all-IP communication between wireless sensor networks and IPv6 networks. The paper proposes the cluster-tree architecture for all-IP wireless sensor networks which is consistent with the IPv6 Internet architecture. Based on the cluster-tree architecture, the paper proposes the hierarchical IPv6 address configuration algorithm where the IPv6 configuration for cluster members in different clusters can be performed simultaneously, so the IPv6 configuration delay is shortened. Based on the proposed cluster-tree architecture and the IPv6 address configuration algorithm, the paper proposes the hierarchical routing scheme in the link layer where the intermediate nodes only need to deal with the frame header in the link layer without processing the headers in the above layers, so the routing delay is shortened and the power consumption is reduced. From both theoretical perspective and simulative perspectives, the paper analyze the performance parameters of the proposed scheme. And the data results show that the performance of the proposed scheme is better.  相似文献   

7.
Hierarchical Mobile IPv6 (HMIPv6) has been proposed by the Internet engineering task force (IETF) to compensate for such problems as handover latency and signalling overhead when employing Mobile IPv6 (MIPv6). HMIPv6 supports micro‐mobility within a domain and introduces a new entity, namely mobility anchor point (MAP) as a local home agent (HA). However, HMIPv6 has caused load concentration at a particular MAP and longer handover latency when an inter‐domain handover occurs. In order to solve such problems, this paper establishes a virtual domain (VD) of a higher layer MAP and proposes a MAP changing scheme. The MAP changing scheme enables complete handover by using binding‐update of the on‐link care of address (LCoA) only when inter‐domain handover occurs. In addition, the concentrated load of a particular MAP is distributed as well. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
移动IPv6切换时延优化新方法   总被引:1,自引:0,他引:1  
移动IPv6中,移动节点(MN)在不同子网间移动时,既不中断与通信对端(CN)的通信,也不用改变其本身的IP地址.但是当MN与其家乡代理(HA)之间相距较远时,移动IPv6切换时延较大,对于实时性要求较高的业务无法适用.本文分析比较了目前移动IPv6常用的切换时延优化方法,提出了一种自适应快速层次移动IPv6切换时延优化方法,减小了移动IPv6切换时延,提高了网络的性能.  相似文献   

9.
基于重叠网络的移动IPv6快速切换   总被引:2,自引:0,他引:2  
基本的移动IPv6切换延迟太大,不能满足实时业务的要求。本文提出了一种基于重叠网络的移动IPv6快速切换算法,这种算法通过在两个不同的IPv6子网间设置重叠网络来实现IP层的无缝(零延迟)切换。文中给出了算法实现的网络结构及其切换过程,并且对其性能进行了分析。算法实现了移动IPv6快速切换,在大部分情况下都可以达到最佳性能。  相似文献   

10.
In order to reduce the cost and decrease the delay caused by combining the AAA function while guaranteeing the fast handover performance, we bring out an enhanced secure fast handover scheme. Our research focuses on improving the security and reducing the delay during the handover process of mobile IPv6, the most important thing is to minimize the authentication latency in AAA processing. According to the scheme referred above, the performance evaluation is analyzed in terms of pedestrian and vehicle, and the results of simulation show that the proposed mechanism reduces the handoff and authentication latency evidently compared to the previous simple traditional combination modeling.  相似文献   

11.
Broadband wireless access networks, such as the IEEE 802.16 standard for wireless metropolitan area networks (WMANs), aim to provide high bandwidth, low-cost, scalable solutions that extend multimedia services from backbone networks to wireless users. Because of a larger coverage area, portability and mobility have become significant issues for providing high quality mobile services, as it is crucial to minimize handover latency and maintain IP session continuity. As a result, such issues were addressed by the IEEE 802.16e task group on the mobile WMAN. However, the scope of the IEEE 802.16e standard did not include cross-layering approaches for the enhancement of upper layer handover performance. This article proposes a new cross-layering design for fast IPv6 handover support over IEEE 802.16e. First, we describe the IEEE 802.16 deployment architectures, as well as the link layer, handover procedures in IEEE 802.16e. Next, we describe the operation of fast IPv6 handover and point out the need for interaction between the network layer and the link layer for proper performance. Then, we propose a new cross-layering design to achieve a proper behavior of the fast IPv6 handover over IEEE 802.16e. Finally, we present handover scenarios for the proposed techniques and discuss the major factors that contribute to the handover latency.  相似文献   

12.
In recent years, with the development of mobile communication technologies and the increase of available wireless transmission bandwidth, deploying multimedia services in next generation mobile IPv6 networks has become an inevitable trend. RSVP (resource reservation protocol) proposed by the IETF is designed for hardwired and fixed networks and can not be used in mobile environments. This paper proposes a protocol, called Fast RSVP, to reserve resources for mobile IPv6. The protocol adopts a cross-layer design approach where two modules (RSVP module and Mobile IPv6 module) at different layers cooperate with each other. Fast RSVP divides a handover process with QoS guarantees into two stages: (1) setup of the resource reservation neighbor tunnel and (2) resource reservation on the optimized route. It can help a mobile node realize fast handover with QoS guarantees as well as avoid resource wasting by triangular routes, advanced reservations and duplicate reservations. In addition, fast RSVP reserves “guard channels” for handover sessions, thus greatly reducing the handover session forced termination rate while maintaining high performance of the network. Based on extensive performance analysis and simulations, Fast RSVP, compared with existing methods of resource reservation in mobile environments, performs better in terms of packet delay and throughput during handover, QoS recovery time after handover, resource reservation cost, handover session forced termination rate and overall session completion rate.  相似文献   

13.
The handover processes in present IP mobility management protocols incur significant latency, thus aggravating QoS of consumer devices. In this paper, we introduce an enhanced handover process for the Proxy Mobile IPv6 (PMIPv6) protocol, which is a recently developed IP mobility management protocol aiming at providing network-based mobility support. The proposed handover process further improves handover performance of PMIPv6 by allowing a new access network obtains handover context before a consumer??s mobile node (MN) moves to the new access network. Data packets destined for the MN are buffered to prevent packet loss and immediately delivered to the MN as the MN moves to the new access network. We evaluate the handover latency and data packet loss of the proposed handover process compared to the basic one of PMIPv6. The conducted analysis results confirm that the proposed handover process yields the reduced handover latency compared to that of the basic PMIPv6 and also prevents data packet loss. We moreover evaluate the buffering cost of the proposed handover process.  相似文献   

14.
一种减少移动IPv6切换延时的新方法   总被引:1,自引:0,他引:1  
董宇欣 《信息技术》2006,30(5):72-75
切换问题是移动计算环境中最基本的问题。理想的切换是指同时具备快速切换和平滑切换能力的无缝切换;快速切换就是要求系统具有最小的切换时延,平滑切换则要求系统具备最低的丢包率。现提出一种基于组播的平滑切换框架模型,该模型的基本思想是让移动节点本身携带途经的接入路由器绑定更新队列,每当移动节点到达一个新的链路并获得该链路的转交地址,就向家乡代理和队列成员进行组播。该模型有效地减少了数据包的丢失率,减少了延时,并与现有的快速切换/IPv6路由优化技术能很好地结合起来。  相似文献   

15.
In wireless/mobile networks, users freely and frequently change their access points (APs) while they are communicating with other users. To support the mobility of mobile nodes (MNs), Mobile IPv6 (MIPv6) is used to inform the information of MN's home address and current care‐of‐address (CoA) to its home agent. MIPv6 suffers from a long delay latency and high packet losses (PLs) because MIPv6 does not support micromobility. A Hierarchical Mobile IPv6 (HMIPv6) is proposed which provides micromobility and macromobility to reduce handoff latency (HL) by employing a hierarchical network structure. In this paper, we propose a cross‐layer partner‐based fast handoff mechanism based on HMIPv6, called the PHMIPv6 protocol. Our PHMIPv6 protocol is a cross‐layer, layer‐2 + layer‐3, and cooperative approach. A cooperative node, called a partner node (PN), is adopted in the PHMIPv6 protocol. A new layer‐2 trigger scheme used in the PHMIPv6 protocol accurately predicts the next AP and then invites a cooperative PN in the area of the next AP. With the cooperation of the PN, the CoA can be pre‐acquired and duplicate address detection operation can be pre‐executed by the PN before the MN initializes the handoff request. The PHMIPv6 protocol significantly reduces the handoff delay time and PLs. In the mathematical analysis, we verified that our PHMIPv6 protocol offers a better HL than the MIPv6, HMIPv6, and SHMIPv6 protocols. Finally, the experimental results also illustrate that the PHMIPv6 protocol actually achieves performance improvements in the handoff delay time, PL rate, and handoff delay jitter. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Proxy Mobile IPv6 (PMIPv6) is a networked-based handover protocol for the IP layer, i.e., the layer 3 mobility management protocol. In this work, we integrate fast handover and IEEE 802.21 Media Independent Handover (MIH) Services with PMIPv6 to improve the handover performance over the heterogeneous wireless network environment. Since it may have multiple candidate destination networks to which a Mobile Node can select for handover, it needs to consider not only the signal strength but also the corresponding networking situation for the proper selection of the next network. To reduce the packet loss situation, the multicast mechanism is adopted to forward packets to these candidate destination networks during the handover processing period. In this work, a Forward Fast Media Independent Handover Control Scheme for Proxy Mobile IPv6 (FFMIH-PMIPv6) is proposed based on the aforementioned concerns. Through the simulations for performance analysis, it shows that the proposed FFMIH-PMIPv6 can have better handover performance in terms of handover latency, packet loss rate and throughput.  相似文献   

17.
Network mobility introduces far more complexity than host mobility. Therefore, host mobility protocols such as Mobile IPv6 (MIPv6) need to be extended to support this new type of mobility. To address the extensions needed for network mobility, the IETF NEMO working group has recently standardized the network mobility basic support protocol in RFC 3963. However, in this RFC, it is not mentioned how authentication authorization and accounting (AAA) issues are handled in NEMO environment. Also, the use of IPsec to secure NEMO procedures does not provide robustness against leakage of stored secrets. To address this security issue and to achieve AAA with mobility, we propose new handover procedures to be performed by mobile routers and by visiting mobile nodes. This new handover procedure is based on leakage resilient-authenticated key establishment (LR-AKE) protocol. Using analytical models, we evaluate the proposed handover procedure in terms of handover delay which affects the session continuity. Our performance evaluation is based on transmission, queueing and encryption delays over wireless links.  相似文献   

18.
Mobile IP allows a mobile node to maintain a continuous connectivity to the Internet when moving from one access point to another. However, due to the link switching delay and to Mobile IP handover operations, packets designated to mobile nodes can be delayed or lost during the handover period. Moreover, every time a new attach point is confirmed, the mobile node, its home agent and its corresponding node must be authenticated mutually. This paper presents a new control function called Extended Handover Control Function (E‐HCF) in order to improve handover performance and authentication in the context of Mobile IPv6 over wireless networks. With an analytical model and some OPNET simulations, we show in this paper that our solution allows provision of low latency, low packet loss and mutual authentication to the standard handover of Mobile IPv6. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
快速层次移动IPv6切换性能分析及优化   总被引:1,自引:0,他引:1  
移动IPv6技术中切换延时对实时应用影响很大。介绍了目前移动IPv6常用的快速移动和层次移动切换技术,描述其切换原理和过程。结合2种技术的优缺点,给出了一种新的快速层次移动IPv6的切换方案。利用NS-2对这3种切换方法进行仿真得到的结果表明,快速层次移动IPv6切换延时要小于快速移动IPv6和层次移动IPv6的切换延时,且降低了数据包丢失率,提高了网络的性能。  相似文献   

20.
一种基于代理移动IPv6的全局移动性管理结构和协议   总被引:1,自引:0,他引:1  
该文定义一种基于代理移动IPv6的全局移动性管理结构和协议,简称为PMIPGMM。 在PMIPGMM中,由网络实体而不是移动节点完成移动性管理, 另外消除了移动节点和接入路由器之间分发数据的无线链路隧道负荷。为与熟知的层次移动IPv6协议比较,基于液体流移动性模型,分别给出了每个协议下,移动节点在平均域停留时间内产生的位置更新、数据分发和总费用函数。分别研究了各种系统参数对费用函数的影响。分析结果表明所提出的基于代理移动IPv6的全局移动性管理协议可以保证低的总费用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号