首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
杨雅文 《山西化工》2024,(1):42-43+46
以钛酸四丁酯和乙酸钡为原料,乙醇和乙酸为溶剂,采用溶胶-凝胶法制备了钛酸钡纳米粉体,并通过XRD、SEM、TG-DTA分析,确定最优工艺条件为:凝胶化温度70℃,混合溶液p H值为3.0~4.0,热处理温度800℃,可获得粒径在50 nm左右的单一钙钛矿相钛酸钡粉体。  相似文献   

2.
采用了一个新的体系合成TiO2粉体,在这个体系中,以钛酸四丁酯为前驱体,盐酸为稳定剂和催化剂,冰乙酸作为抑制剂。对制备TiO2粉体的影响因素进行了分析,并用TEM、XRD对该粉体进行了表征。  相似文献   

3.
以SnCl4.5H2O为原料,NH3.H2O为沉淀剂,采用溶胶-凝胶-共沸蒸馏技术制备纳米SnO2粉体,实验考察了原料浓度、反应温度、反应终点pH值、干燥脱水方式、焙烧温度等工艺条件对纳米SnO2粉体粒径的影响,得出最佳工艺条件为:SnCl4溶液浓度为0.2mol/L,氨水浓度控制在8%~10%,终点pH值控制2.5,反应温度65℃,温度为500℃时焙烧3h。该制备工艺分别采用醇洗和共沸蒸馏两种脱水方式,将制备得到的粉末用BET、FT-IR、TG-DSC、XRD和TEM等进行表征,采用共沸蒸馏脱水工艺所得的SnO2粉末最小平均粒径可至7.2nm,且无团聚存在。  相似文献   

4.
TiO2粉体的溶胶-凝胶法制备及表征   总被引:1,自引:0,他引:1  
采用了一个新的体系合成TiO2 粉体,在这个体系中,以钛酸四丁酯为前驱体,盐酸为稳定剂和催化剂,冰乙酸为抑制剂.在此过程中,盐酸起着重要的作用,缩短了反应时间,并对所制备的粉体进行影响因素和TEM、XRD分析.  相似文献   

5.
溶胶-凝胶法制备纳米粉体的研究进展   总被引:4,自引:0,他引:4  
介绍了用溶胶-凝胶法制备纳米粉体的工艺方法,并讨论了它的影响因素。从制备纳米粉体时防团聚的干燥技术和化学改性法等方面介绍了溶胶-凝胶法制备纳米粉体的研究进展。  相似文献   

6.
溶胶-凝胶法制备Al2O3纳米粉   总被引:16,自引:0,他引:16  
以Al(NO3) 3和NH3·H2 O为原料制备AlOOH勃姆石溶胶 ,加入PVA作为分散剂 ,干燥后制成干凝胶。干凝胶经不同温度下煅烧得到不同晶型的Al2 O3纳米粉。X—射线衍射分析结果表明 ,勃姆石干凝胶在煅烧过程中的物相变化为AlOOH→ε-Al2 O3→ -Al2 O3→δ -Al2 O3→θ -Al2 O3→α-Al2 O3,采用电子显微镜和BET比表面积法测量出Al2 O3纳米粉的颗粒大小  相似文献   

7.
以硝酸锂、硝酸铝和碳酸氢铵为原料,采用溶胶-凝胶法制备了Li-β-Al2O3纳米粉体。研究了pH值、热处理温度和锂铝物质的量比[n(Li)/n(Al)]对制备Li-β-Al2O3纳米粉体的影响。用X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)和自动电位粒度仪对制备的粉体进行了表征。结果表明,当n(Li)/n(Al)=1∶5(为化学计量比时),pH值在3.6左右时,可得到稳定透明的凝胶,经1000℃热处理后,产物为纯相的Li-β-Al2O3,FE-SEM结果表明粉体的粒度在100nm以内。  相似文献   

8.
以硝酸锂、硝酸铝和碳酸氢铵为原料,采用溶胶-凝胶法制备了Li-β-Al2O3纳米粉体.研究了pH值、热处理温度和锂铝物质的量比[n(Li)/n(Al)]对制备Li-β-Al2O3纳米粉体的影响.用X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)和自动电位粒度仪对制备的粉体进行了表征.结果表明,当n(Li)/n(Al) =1∶ 5(为化学计量比时),pH值在3.6左右时,可得到稳定透明的凝胶,经1000℃热处理后,产物为纯相的Li-β-Al2O3,FE-SEM结果表明粉体的粒度在100nm以内.  相似文献   

9.
10.
以Al(NO3)3.9H2O、Y(NO3)3.6H2O、Nd(NO3)3.6H2O为主要原料,C6H8O7.H2O为燃烧剂,采用溶胶-凝胶法制备了Nd:YAG纳米粉体,系统的研究了Nd:YAG纳米粉体的最佳制备条件。用X射线衍射和红外吸收光谱对其进行物相鉴定,表明在800℃煅烧2h就可以合成YAG粉末。用荧光光谱分析可知800℃制得的粉体在243nm处有一显著的激发谱带,在728nm处有一显著的发射谱带,粉体具有良好的荧光性能。用激光粒度仪分析可知所得粉体分散性良,平均粒度在147.7nm左右。  相似文献   

11.
氧化铟纳米粉制备及表征研究   总被引:2,自引:0,他引:2  
以无机盐为原料,采用液相沉淀法制备纳米氧化铟粉体。研究了沉淀反应条件及沉淀后处理等对纳米氧化铟粉体质量的影响,利用TG-DSC、FT-IR、XRD、SEM和EDS等分析手段对所制纳米氧化铟粉体的结构、粒度、形貌、成分等进行了表征。结果表明:该法制备的氧化铟纳米粉具有立方晶系结构、纯度较高、颗粒均匀呈球形、分散性良好、平均粒径为50nm左右。  相似文献   

12.
Nanocrystalline indium tin oxide (ITO) powders were prepared by a novel spray combustion method. Using single-drop study equipment, we studied the thermodynamics of the combustion reaction. The reaction can be ignited at air temperature as lower as 171.3°C when using urea and glucose as composite fuel. Once the reaction is ignited, the combustion temperature can surge to above 500°C, generating nanocrystalline ITO powders with grain size about 40 nm. Footages from high-speed camera demonstrated that the reaction is in three-step: moderate beginning, violent middle, and decaying end. It is also noticed that the ignition is very sensitive to the air temperature, even 0.2°C minus deviation may fail the combustion. The combustion reaction is self-sustainable, which saves the energy supply. And the low ignition temperature means the combustion reaction can be carried out in a conventional spray dryer. Our results provide a feasible way to mass production of nanocrystalline ITO powders, which as a methodology, may be extended to the production of other oxide nanopowders.  相似文献   

13.
以SnCl4·5H2O和SbCl3为原料,NH3为共沉淀剂,在表面活性剂存在下,采用室温固相法制备锑掺杂二氧化锡(ATO)纳米粉体。探讨了掺锑量、表面活性剂对ATO粉体性能的影响。运用IR、XRD、TEM、比表面仪(BET)等对ATO粉体进行了表征。结果表明,当锑掺杂量为12.3%时,ATO纳米粉体具有最小电阻率,为3.36Ω·cm,ATO粉体为四方晶红石结构,颗粒形状为近似球形,粒度均匀,一次粒径为10 nm左右。  相似文献   

14.
本文采用共沸蒸馏法、水热法、溶胶-凝胶法分别制备纳米SnO2粉体,所制得的SnO2粉体利用X-射线衍射(XRD)和扫描电子显微镜(SEM)表征。结果表明,3种方法制备得的粉体均为四方金红石结构,共沸蒸馏法所得粉体平均颗粒约为20nm。水热法所得粉体的平均颗粒约为10nm。溶胶-凝胶法所得粉体的平均颗粒约为70nm。研究不同制备方法合成纳米SnO2粉体在合成工艺,生产周期,产物颗粒大小等方面的优缺点。  相似文献   

15.
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.  相似文献   

16.
《Ceramics International》2016,42(11):12771-12777
Cobalt oxides nanopowders were prepared using novel cellulose assisted combustion synthesis and solution combustion synthesis techniques. The synthesis conditions were optimized to produce high surface area cobalt oxide nanopowders. Effect of precursors ratio on product properties (such as crystalline structure, nanoparticle size, surface area etc.) were studied and compared for the two methods. Thermodynamic calculations along with TGA/DTA studies were used to understand the synthesis mechanism leading to cobalt oxide formation. The synthesized nanopowders were characterized using various materials characterization techniques such as XRD, SEM and TEM.  相似文献   

17.
Indium tin oxide nanoparticles with shapes varying from sphere to cubic were synthesized by controlling the ratio of the concentrations of the protective polymer (PVP) to indium tin oxide precursor in their preparation by co-precipitation. Transmission electron microscopy was used to determine the size and shape. The XPS spectra of the particles revealed that the atomic ratios of In:Sn and (In + Sn):O are 10.0:1.0 and 1.0:1.5, respectively for both of the spheres and the cubes. X-ray diffraction study showed that these particles have the same crystalline structure. Thus, it is shown that the formation of the various shapes of the ITO particles could be achieved by using different ratios of protective polymer instead of varying the protective polymer or the sintering process.  相似文献   

18.
Indium tin oxide films, an important n-type semiconductor oxide, show great prospects in optoelectronic device applications. Consequently, as a key raw material of targets for sputtering films, it is important to prepare low-resistivity indium tin oxide powders. Herein, low-resistivity indium tin oxide submicro-cubes are synthesized by a seed-assisted coprecipitation method. The effects of seed content, In3+ concentration, aging time, reaction temperature and calcination temperature on resistivity were investigated by single factor and orthogonal experiments. To ensure reliability and reproducibility of data, each experiment was repeated three times and resistivity of each sample was measured three times to obtain average value. The results indicated that optimal sample was matched with cubic phase In2O3. The single-crystal indium tin oxide particles exhibited a regular cubic shape with a size of nearly 500 nm and low resistivity of 0.814 Ω·cm. Compared with particles prepared by the conventional coprecipitation method, indium tin oxide submicro-cubes showed good dispersion. The presence of seed particles provided nucleation sites with lower energy barriers and promoted formation of submicro-cubes. The face-to-face contact among particles and good dispersion contributed to electron transfer, resulting in lower resistivity. The seed-assisted synthesis provides a novel way to prepare low-resistivity indium tin oxide submicro-cubes.  相似文献   

19.
研究了以甲醇(MeOH)、二丁基氧化锡(Bu2SnO)和氨基甲酸甲酯(MC)为原料,制备二丁基二甲氧基锡的方法。在密闭反应体系中,n(MC)∶n(MeOH)∶n(Bu2SnO)= 2∶3∶1时,180 ℃反应5 h,可以获得目标产物。产品经ICP-MS法分析,二丁基二甲氧基锡含量为90.3%。  相似文献   

20.
以钛酸四丁酯为前驱体,通过溶胶凝胶法制备表面平整、致密的TiO2薄膜,并且通过热重分析仪(TGA)、X射线衍射仪(XRD)、衰减全反射红外线光谱分析仪(ATR IR)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和接触角测量仪等研究TiO2薄膜的晶相、组成和表面的微观结构、润湿性。利用TiO2薄膜表面部分覆盖的十八烷基三氯硅烷自组装单分子层在紫外光照下的降解来研究其光催化性能,并且用水在该薄膜上的接触角的变化来表征十八烷基三氯硅烷的降解量。研究结果表明:TiO2薄膜具有很低的粗糙度,透明的锐钛矿相薄膜在较弱的紫外光照强度下具有较好的光催化性能,在自清洁和光学薄膜领域有潜在的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号