共查询到20条相似文献,搜索用时 109 毫秒
1.
传统的飞机目标识别算法一般是通过目标分割,然后提取不变特征进行训练来完成目标的识别。但是,对于实际情况比较复杂的遥感图像飞机目标,至今没有一种适合多种机型的分割和识别算法。针对现有识别算法的不足,本研究提出一种基于特征点空间分布、颜色不变矩和Zernike不变矩相结合的遥感图像飞机目标识别算法。方法:首先,对预处理后的遥感图像和模板图像进行小波变换,在低分辨率图像下采用圆投影特征进行粗匹配,确定候选目标;粗匹配结束后,提取高分辨率图像的多尺度Harris-laplace角点,并画出Delaunay三角网,同时提取出颜色不变矩和Zernike不变矩;然后使用欧氏距离作为这三种特征的相似性度量,并和样本图像进行加权匹配;最后选取欧式距离最小的图像作为最终的识别目标。结果:实验表明,本文算法飞机检测精度比现有算法高2.2%,飞机识别精度比现有算法高1.4%-10.4%。该算法能从遥感图像中精确识别出十大飞机目标,并对背景、噪声、视角变化等多种干扰具有良好的鲁棒性。结论:提出了一种基于特征点空间分布、颜色不变矩和Zernike不变矩相结合的飞机识别算法,该算法使用了图像的多种信息,包括特征点和不变矩,有效地克服了使用单一特征无法描述多种信息的不足。实验结果表明,本文采用基于特征点和不变矩的飞机识别算法比其他算法具有更强的抗干扰能力和识别精度。 相似文献
2.
3.
一种飞机图像目标多特征信息融合识别方法 总被引:1,自引:0,他引:1
提出了一种基于概率神经网络(Probabilistic neural networks, PNN)和DSmT推理 (Dezert-Smarandache theory)的飞机图像目标多特征融合识别算法. 针对提取的多个图像特征量,利用数据融合的思想对来自图像目标各个特征量提供的信息进行融合处理.首先,对图像进行二值化预处理,并提取Hu矩、归一化转动惯量、 仿射不变矩、轮廓离散化参数和奇异值特征5个特征量;其次, 针对DSmT理论中信度赋值构造困难的问题,利用PNN网络,构造目标识别率矩阵,通过目标识别率矩阵对证据源进行信度赋值;然后,用DSmT组合规则在决策级层进行融合,从而完成对飞机目标的识别;最后,在目标图像小畸变情形下, 将本文提出的图像多特征信息融合方法和单一特征方法进行了对比测试实验,结果表明本文方法在同等条件下正确识别率得到了很大提高,同时达到实时性要求,而且具有有效拒判能力和目标图像尺寸不敏感性. 即使在大畸变情况下,识别率也能达到89.3%. 相似文献
4.
5.
目的 遥感图像飞机目标的检测与识别是近年来国内外研究的热点之一。传统的飞机目标识别算法一般是先通过目标分割,然后提取不变特征进行训练来完成目标的识别。在干扰较少的情况下,传统算法的识别效果较好。但遥感图像存在着大量的干扰因素,如光照变化、复杂背景及噪声等,因此传统算法识别精度较低,耗时量较大。为快速、准确识别遥感图像中飞机目标,提出一种基于显著图和全局特征、局部特征结合的飞机目标识别算法。方法 首先使用改进的Itti显著算法提取遥感图像中的显著目标;接着使用基于区域增长和线标记算法寻找连通区域来确定候选目标的数量和位置;然后提取MSA(multi-scale autoconvolution)、Pseudo-Zernike矩和Harris-Laplace特征描述子,并使用标准差和均值的比值来评估特征的稳定性,再把提取的特征结合成特征向量;最后应用支持向量机的方法完成对候选目标的识别。结果 实验结果表明,本文算法检测率和识别率分别为97.2%和94.9%,均高于现有算法,并且耗时少,虚警率低(为0.03),对噪声干扰、背景影响以及光照变化和仿射变化均具有良好的鲁棒性。结论 本文算法使用了图像的3种特征信息,包括MSA、Pseudo-Zernike矩和Harris-Laplace特征描述子,有效克服单一特征的缺点,提高了遥感图像飞机目标的识别率和抗干扰能力。 相似文献
6.
7.
8.
一种新的图像不变特征研究 总被引:2,自引:0,他引:2
为了解决图像特征受灰度及几何畸变的影响,本文利用物理学相关概念对图像进行描述,定义了图像的质量,重心,转动惯量,提出了一种新的图像不变特征即归一化转动惯量(NMI)特征,对其不变性进行了分析,实验结果表明,图像的归一化转动惯量特征具有抗灰度及TRS不变性,且提取方法简单,易于实现。 相似文献
9.
10.
阈值分割是图像分割的常用方法。本文提出采用基于改进的自适应阈值区域分割方法,提高了对飞机目标遥感图像的分割效果。结果表明,该分割方法具有针对性,比传统方法具有明显的优势。 相似文献
11.
12.
利用能量特征进行条烟识别 总被引:1,自引:0,他引:1
针对条烟识别中的图像特征提取问题,定义了一种新的图像特征。此特征描述了图像能量谱的分布特性,能够综合地反映图像的颜色、纹理、形状特点,并且不随图像的旋转和平移而改变。将此特征应用到条烟识别中,获得了令人满意的结果。 相似文献
13.
为了实现自来水厂沉淀池加料系统的自动控制,针对矾花图像自动识别部分,提出一种采用纹理分析方法,提取矾花图像的纹理特征,然后组合这些特征,构造一种先级联再并联的多分类器组合结构,实现矾花图像的自动识别。实验证明,该算法准确度大、识别率高达97%,可靠性达99%,能满足实际系统的要求。 相似文献
14.
为解决单一特征细粒度船舶图像识别率低的问题,提出一种循环注意卷积神经网络(recurrent attention convolutional neural network,RA-CNN)与多特征区域融合的船舶目标识别方法。该方法通过在VGG-19网络中引入尺度依赖池化(scale-dependent pooling,SDP)算法解决小目标过度池化的问题,提升了小型船舶的识别性能;注意建议网络(attention proposal network,APN)加入联合聚类(joint clustering)算法,生成多个独立的特征区域,使整个模型充分利用全局信息,提高了船舶识别精度;同时设计特征区域优化方法降低多个特征区域的重叠率,解决了过拟合问题;通过定义新的损失函数来交叉训练VGG-19和APN,加快了收敛速度。利用公开的光电船舶数据集对该方法进行测试实验,识别准确率最高可达90.2%,无论是识别率还是模型的鲁棒性较单特征都有了很大的提升。 相似文献
15.
16.
人体姿态是动作识别的重要语义线索,而CNN能够从图像中提取有很强判别能力的深度特征,本文从图像局部区域提取姿态特征,从整体图像中提取深度特征,探索两者在动作识别中的互补作用.首先介绍了一种姿态表示方法,每个肢体部件的姿态由描述该部件姿态的一组Poselet检测得分表示.为了抑制检测错误,设计了基于部件的模型作为检测上下文.为了从数量有限的数据集中训练CNN网络,本文使用了预训练和精细调节的方法.在两个数据集中的实验表明,本文介绍的姿态特征与深度特征混合使用,动作识别性能得到了极大提升. 相似文献
17.
对国内外当前比较流行的军事目标识别的成像途径、分类方法梳理总结并对几种成像途径的军事目标识别的优劣势进行分析比较,最后对基于图像处理技术的军事目标识别方法与其他识别手段相结合的发展趋势做一简述。 相似文献
18.
19.
该文以可见光图像舰船目标为研究对象,提出了用多谱图像和全色图像进行特征融合来检测舰船目标的方法。该方法首先利用多谱图像实现水域和陆地的分离,然后把分类结果映射到全色图像上从而实现在全色图像上区分水域和陆地;屏蔽陆地后用Otsu方法分别在多谱图像和全色图像上对目标进行分割,并提取目标特征,最后对目标特征进行融合来检测舰船目标。实验证明该方法有效可行。 相似文献