首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实验对比研究了Ga2O5、TeO2、GeO2、WO3、Nb2O5和Bi2O5金属氧化物的掺入对氟磷激光玻璃的光谱和激光性能的影响。结果表明, TeO2、GeO2和Ga2O5的加入增大了Yb3+的吸收和发射截面; 其中, 掺有TeO2的氟磷玻璃的Yb3+吸收和发射截面最大, 分别达到了1.95 pm2和0.85 pm2。Ga2O5、Nb2O5和GeO2的加入对玻璃激光性能的提高具有极大的帮助; 其中, 在掺有Ga2O5的氟磷玻璃中激光参数SFL值最大, 为1.237。同时发现, 在TeO2和GeO2掺杂氟磷玻璃中也存在严重的Yb3+荧光俘获现象, 大大减弱了其激光性能。  相似文献   

2.
A new structural type of rare earth metaphosphate, Lu(PO3)3, was prepared from high-temperature solution, of which the crystal structure was solved in S.G. of Cc (No.9) and Z = 4 with unit cell dimensions of a = 13.972(3) Å, b = 6.6710(13) Å, c = 9.958(2) Å and β = 127.36(3)°. In Lu(PO3)3, [LuO6] octahedra connect with the non-bridging oxygens on (PO3)n infinite zigzag chains that extended along c-axis. The VUV and X-ray excited luminescent properties of undoped and Ln3+ (Ln = Ce, Eu, Tb) doped samples were examined, from which the optical band gap was estimated to be 8.3 eV. Besides, in the undoped sample a STE emission within 320–480 nm was observed, which probably be related to oxygen defects. However, in the Lu(PO3)3:Ce sample the Ce3+ emission was weak and STE emission was totally quenched under hard X-ray excitation.  相似文献   

3.
Single crystals of gadolinium–sodium polyphosphate NaGd(PO3)4 were grown for the first time using a flux method and characterized by X-ray diffraction. This phosphate crystallizes in a monoclinic system with P21/n space group and with the following unit-cell dimensions: a = 9.767(3) Å, b = 13.017(1) Å, c = 7.160(2) Å, β = 90.564(5)°, V = 910.3(4) Å3 and Z = 4. The crystal structure was solved from 3451 X-ray independent reflections with final R(F2) = 0.0219 and Rw(F2) = 0.056 refined with 164 parameters (). The atomic arrangement can be described as a long chain polyphosphate organization. Two infinite (PO3)∝ chains with a period of eight tetrahedra run along the [0 1 1] direction. The structure of NaGd(PO3)4 consists of GdO8 polyhedra sharing oxygen atoms with phosphoric group PO4. Each Na+ ion is bonded to eight oxygen atoms.  相似文献   

4.
We report on the experimental results of frequency dependent a.c. conductivity and dielectric constant of SrTiO3 doped 90V2O5–10Bi2O3 semiconducting oxide glasses for wide ranges of frequency (500–104 Hz) and temperature (80–400 K). These glasses show very large dielectric constants (102–104) compared with that of the pure base glass (≈102) without SrTiO3 and exhibit Debye-type dielectric relaxation behavior. The increase in dielectric constant is considered to be due to the formation of microcrystals of SrTiO3 and TiO2 in the glass matrix. These glasses are n-type semiconductors as observed from the measurements of the thermoelectric power. Unlike many vanadate glasses, Long's overlapping large polaron tunnelling (OLPT) model is found to be most appropriate for fitting the experimental conductivity data, while for the undoped V2O5–Bi2O3 glasses, correlated barrier hopping conduction mechanism is valid. This is due to the change of glass network structure caused by doping base glass with SrTiO3. The power law behavior (σac=A(ωs) with s<1) is, however, followed by both the doped and undoped glassy systems. The model parameters calculated are reasonable and consistent with the change of concentrations (x).  相似文献   

5.
The microstructure, electrical properties, dielectric characteristics, and DC-accelerated aging behavior of the ZnO–V2O5–MnO2 system sintered were investigated for MnO2 content of 0.0–2.0 mol% by sintering at 900 °C. For all samples, the microstructure of the ZnO–V2O5–MnO2 system consisted of mainly ZnO grain and secondary phase Zn3(VO4)2. The incorporation of MnO2 to the ZnO–V2O5 system was found to restrict the abnormal grain growth of ZnO. The nonlinear properties and stability against DC-accelerated aging stress improved with the increase of MnO2 content. The ZnO–V2O5–MnO2 system added with MnO2 content of 2.0 mol% exhibited not only a high nonlinearity, in which the nonlinear coefficient is 27.2 and the leakage current density is 0.17 mA/cm2, but also a good stability, in which %ΔE1 mA = −0.6%, %Δ = −26.1%, and %Δtan δ = +22% for DC-accelerated aging stress of 0.85E1 mA/85 °C/24 h.  相似文献   

6.
Glasses of various compositions in the system (100 − x)(Li2B4O7) − x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) (10  x  60, in molar ratio) were prepared by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). The amorphous nature of the as-quenched glasses and crystallinity of glass nanocrystal composites were confirmed by X-ray powder diffraction studies. Glass composites comprising strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9−δ (SBVN)) nanocrystallites were obtained by controlled heat-treatment of the as-quenched glasses at 783 K for 6 h. High resolution transmission electron microscopy (HRTEM) of the glass nanocrystal composites (heat-treated at 783 K/6 h) confirm the presence of rod shaped crystallites of SBVN embedded in Li2B4O7 glass matrix. The optical transmission spectra of these glasses and glass nanocrystal composites of various compositions were recorded in the wavelength range 190–900 nm. Various optical parameters such as optical band gap (Eopt), Urbach energy (ΔE), refractive index (n), optical dielectric constant and ratio of carrier concentration to the effective mass (N/m*) were determined. The effects of composition of the glasses and glass nanocrystal composites on these parameters were studied.  相似文献   

7.
Compositional dependence of ionic conductivity in the system ZrO2–Y2O3–Yb2O3 was investigated in the temperature range 573–873 K using the complex impedance technique. It was shown that the conductivity decreases with increasing concentration of Yb2O3 in the system ZrO2–Y2O3–Yb2O3. Analyzing the experimental data according to the classic Arrhenius equation showed that such an experimental phenomenon can be attributed to the tighter association between Yb3+ and oxygen vacancy, compared with that between Y3+ and oxygen vacancy, which hinders the migration of oxygen vacancy in the materials.  相似文献   

8.
This paper presents the optical absorption and luminescence properties of Er3+ doped mixed alkali borosilicate glasses: 59.5SiO2 · 20B2O3 · xLi2O · (20 − x)Na2O · 0.5Er2O3 and 59.5SiO2 · 20B2O3 · xLi2O · (20 − x)K2O · 0.5Er2O3, with x = 0, 4, 8, 12, 16 and 20 mol%. The variations of Judd–Ofelt intensity parameters (Ω2, Ω4, and Ω6), hypersensitive transition intensities, total radiative transition probability (AT), radiative lifetimes (τR), integrated absorption cross-sections (Σ) and stimulated emission cross-sections (σp) as a function of x are discussed in detail. The changes in Ω2 and intensities of hypersensitive transitions are attributed to optical basicity changes in the host glass matrix, which leads to variations in the covalency of the Er–O bond. The luminescence properties are reported for certain transitions, and the emission cross-section is high at x = 8–12 in the case of lithium sodium glass, whereas in lithium potassium glass it is high at x = 8.  相似文献   

9.
Ca5La5(SiO4)3(PO4)3O2 doped with Dy3+ were synthesized by sol–gel technology with hybrid precursor employed four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM diagraphs show that there exist some novel unexpected morphological structures of microrod owing to the crosslinking reagents than TEOS as silicate source for their amphipathy template effect. X-ray pictures confirm that Ca5La5(SiO4)3(PO4)3O2:Dy3+ compound is formed by a pure apatitic phase. The Dy3+ ions could emit white light in Ca5La5(SiO4)3(PO4)3O2 compound, and the ratio of Y/B is 1.1, when the Dy3+ doped concentration is 1.0 mol%.  相似文献   

10.
This study reports a new, simple and effective pre-calcined method for fabrication BaO–TiO2–B2O3–SiO2 low temperature co-fired ceramics (LTCC) at a sintering temperature below 900 °C, and with dielectric losses (tan δ) lower than 2 × 10−3. The research results have shown that the addition of 2–5 wt% Al2O3 could easily eliminate the porosity of the glass-ceramics because of the excellent wetting behavior between alumina and the BaO–B2O3–SiO2 glass liquid phase in the low temperature co-fired ceramic system.  相似文献   

11.
The preparation, crystal structure, TG–DTA analysis and spectroscopy investigation are reported for the 2,5-dimethoxy phenyl ammonium cyclotetraphosphate dihydrate [2,5-(CH3O)2C6H3NH3]4P4O12·2H2O. This new compound is triclinic P with unit cell dimensions: a = 7.438(5) Å, b = 11.841(7) Å, c = 12.354(4) Å,  = 96.61(4)°, β = 98.35(4)°, γ = 102.60(6)°, Z = 1 and V = 1038.0(1) Å3. Its crystal structure has been determined and refined to R = 0.049, with 5128 independant reflections. The structure can be described by rows of P4O12 ring anions along the a axis; between these rows are located the organic groups, connected to them by hydrogen bonds.  相似文献   

12.
Eu3+-activated scintillating glasses with molar compositions of 35SiO2–15B2O3–30Ln2O3–20AlF3 (Ln = Y, La, Gd, Lu) have been prepared. The effects of Ln3+ ions on the density, transmission, photoluminescence and radioluminescence have been studied. The glasses have high density, ranging from 4.0 to 6.1 g/cm3 in the order of Y < La < Gd < Lu. Gd-containing glass exhibits a much higher light yield than the other glasses. The effect of complete substitution of fluorine by oxygen on the scintillation properties is also investigated.  相似文献   

13.
Synthesis and single crystal structure are reported for a new gadolinium acid diphosphate tetrahydrate HGdP2O7·4H2O. This salt crystallizes in the monoclinic system, space group P21/n, with the following unit-cell parameters: a = 6.6137(2) Å, b = 11.4954(4) Å, c = 11.377(4) Å, β = 87.53(2)° and Z = 4. Its crystal structure was refined to R = 0.0333 using 1783 reflections. The corresponding atomic arrangement can be described as an alternation of corrugated layers of monohydrogendiphosphate groups and GdO8 polyhedra parallel to the () plane. The cohesion between the different diphosphoric groups is provided by strong hydrogen bonding involving the W4 water molecule.

IR and Raman spectra of HGdP2O7·4H2O confirm the existence of the characteristic bands of diphosphate group in 980–700 cm−1 area. The IR spectrum reveals also the characteristic bands of water molecules vibration (3600–3230 cm−1) and acidic hydrogen ones (2340 cm−1). TG and DTA investigations show that the dehydration of this salt occurs between 79 and 900 °C. It decomposes after dehydration into an amorphous phase. Gadolinium diphosphate Gd4(P2O7)3 was obtained by heating HGdP2O7·4H2O in a static air furnace at 850 °C for 48 h.  相似文献   


14.
High temperature persistent spectral hole burning up to room temperature has been observed in Eu3+ ions doped oxy-fluoride glasses with a composition of 30CaF2–10Al2O3–60B2O3 (mol%) melted in a reducing atmosphere. The hole stability was studied through light-induced hole refilling and temperature cycling experiments. The burned holes survive thermal cycling to 300 K due to a high barrier height of 0.69 eV in the sample.  相似文献   

15.
The structure of NaPb9(PO4)6F(H2O)0.33, isostructural with apatite, was determined by X-ray powder diffraction methods and the result of Rietveld refinement is P63/m, a = 9.76396(8) Å and c = 7.27520(9) Å. The final refinement led to RF = 5.4%, RB = 6.6%. In the tunnel, the water molecule (Ow) and F ions appear to be located in 2b and 4e sites, with occupancies of 0.028(6) and 0.075(8), respectively. In the M(1) and M(2) sites the occupancies of Pb and Na are 0.282(3)/0.051(3) and 0.467(5)/0.033(5), respectively. The formula assigned to the compound is [Pb3.38(4)Na0.62(4)](1)[Pb5.60(6)Na0.40(6)](2)(PO4)6F0.90(10)(H2O)0.33(7)0.77(17), where □ = vacancy. The assignment of the observed frequencies in the Raman and infrared spectra is discussed on the basis of a unit-cell group analysis and by comparison with fluor and chloroapatite analogs. The result of 31P and 23Na magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies confirmed the structural results.  相似文献   

16.
The effect of Al2O3 particles on microhardness and room-temperature compression properties of directionally solidified (DS) intermetallic Ti–46Al–2W–0.5Si (at.%) alloy was studied. The ingots with various volume fractions of Al2O3 particles and mean 22 interlamellar spacings were prepared by directional solidification at constant growth rates ranging from 2.78×10−6 to 1.18×10−4 ms−1 in alumina moulds. The ingots with constant volume fraction of Al2O3 particles and various mean interlamellar spacings were prepared by directional solidification at a growth rate of 1.18×10−4 ms−1 and subsequent solution annealing followed by cooling at constant rates varying between 0.078 and 1.889 K s−1. The mean 22 interlamellar spacing λ for both DS and heat-treated (HT) ingots decreased with increasing cooling rate according to the relationship λ−0.46. In DS ingots, microhardness, ultimate compression strength, yield strength and plastic deformation to fracture increased with increasing cooling rate. In HT ingots, microhardness and yield strength increased and ultimate compression strength and plastic deformation to fracture decreased with increasing cooling rate. The yield stress increased with decreasing interlamellar spacing and increasing volume fraction of Al2O3 particles. A linear relationship between the Vickers microhardness and yield stress was found for both DS and HT ingots. A simple model including the effect of interlamellar spacing and increasing volume fraction of Al2O3 particles was proposed for the prediction of the yield stress.  相似文献   

17.
Dense TiC–Al2O3–Al composite was prepared with Al, C and TiO2 powders by means of electric field-activated combustion synthesis and infiltration of the molten metal (here Al) into the synthesized TiC–Al2O3 ceramic. An external electric field can effectively improve the adiabatic combustion temperature of the reactive system and overcome the thermodynamic limitation of reaction with x < 10 mol. Thereby, it can induce a self-sustaining combustion synthesis process. During the formation of Al2O3–TiC–Al composite, Al is molten first, and reacted with TiO2 to form Al2O3, followed by the formation of TiC through the reaction between the displaced Ti and C. Highly dense TiC–Al2O3–Al with relative density of up to 92.5% was directly fabricated with the application of a 14 mol excess Al content and a 25 V cm−1 field strength, in which TiC and Al2O3 particles possess fine-structured sizes of 0.2–1.0 μm, with uniform distribution in metal Al. The hardness, bending strength and fracture toughness of the synthesized TiC–Al2O3–Al composite are 56.5 GPa, 531 MPa and 10.96 MPa m1/2, respectively.  相似文献   

18.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

19.
The preparation of thorium phosphate-diphosphate (Th4(PO4)4P2O7, TPD) was developed through the precipitation of thorium phosphate-hydrogenphosphate hydrate (Th2(PO4)2(HPO4)·H2O, TPHPH) at 150–160 °C in closed PTFE container or in autoclaves. From EPMA analyses and SEM observations, the initial precipitate was single phase and multilayered. The behaviour of TPHPH (orthorhombic system with a = 21.368(2) Å, b = 6.695(1) Å and c = 7.023(1) Å) was followed when heating up to 1250 °C. It was first dehydrated leading to the anhydrous thorium phosphate-hydrogenphosphate (TPHP, orthorhombic system with a = 21.229(2) Å, b = 6.661(1) Å and c = 7.031(1) Å at 220 °C) after heating between 180 and 200 °C. This one turned progressively into the new low-temperature variety of TPD (called -TPD, orthorhombic system with a = 21.206(2) Å, b = 6.657(1) Å and c = 7.057(1) Å at 300 °C) correlatively to the condensation of hydrogenphosphate groups into diphosphate entities. These three phases (TPHPH, TPHP and -TPD) exhibit closely related 2D layered structures, therefore different from the 3D structure of the thorium phosphate-diphosphate (high-temperature variety). This latter compound, now called β-TPD, was obtained by heating -TPD above 950 °C. All the techniques involved in this study (XRD, Raman and IR spectroscopy, 1H and 31P NMR) confirmed the successive chemical reactions proposed.  相似文献   

20.
The effects of Al2O3, Yb2O3, Er2O3 and OH on spectral properties of P2O5·Na2O·SrO·Al2O3·Yb2O3·Er2O3 erbium phosphate glass were studied. 5, 8, 13 mol% Al2O3, 4, 5, 6, 7 and 8 mol% Yb2O3 and 0.05, 0.2, 0.4 mol% Er2O3 were used. It was found Al2O3 improves fluorescent lifetime of Er3+ ions, but the integrated absorption cross-section of Er3+ ions decreases with the increase of Al2O3 concentration. Evaluating from energy transfer efficiency of Yb3+ to Er3+ and spectral parameters of Yb3+ and Er3+, lower Al2O3 content, 6 mol% Yb2O3 and 0.2–0.4 mol% Er2O3 are preferred for LD pumped microchip laser application. OH groups in glass greatly affect fluorescent intensity and lifetime of Er3+, Yb3+:phosphate glass. The OH absorption coefficient at 3000 cm−1 should be <1 cm−1 for laser applications. Pumped with a 2 W, 974 nm InGaAs laser diode, CW laser centered at 1530 nm with slope efficiency of 10.6% and maximum output of 43 mW was achieved in our 2 mm thick Er3+, Yb3+:phosphate glass at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号