首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
直接碳燃料电池(DCFC)具有能量转化效率高、污染低、燃料来源广等优点,是缓解能源危机和环境污染的一种有效途径,其性能与所使用的燃料密切相关。本文介绍DCFC的发展历史、研究现状及发展动态,评述了煤、焦炭、活性炭、石墨等含碳物质作为DCFC燃料的优缺点,分析讨论了碳燃料的晶体结构缺陷、表面含氧官能团对阳极电化学反应的促进作用,以及碳燃料的电解质润湿能力、孔隙结构、电导率、粒径大小对阳极电化学反应的质量传递与电荷传递的相互关系;探讨了阳极催化剂促进阳极反应并提高电池性能的机制;简要讨论了DCFC碳燃料的未来发展趋势。  相似文献   

2.
据海外媒体报道,英国科学家表示,中密度纤维板可以在最小限度改装下为直接碳燃料电池(DCFC)提供电能。直接碳燃料电池是一种高效、清洁的燃料电池技术,其原理是碳和氧气勿需气化和重整可直接通过电化学反应产生电能,效率可达80%,燃料  相似文献   

3.
一种基于直接碳燃料电池(Direct Carbon Fuel Cell,DCFC)建立的性能稳定,环境污染小,经济前景优异的新型间接碳空气燃料电池(Indirect Carbon/Air Fuel Cell,ICAFC)。研究了该新型ICAFC电池在700~800℃的反应温度和通入氢气、氦气和二氧化碳等不同气体时的电池性能,以及不同反应环境下的稳定性。实验表明:随着反应室温度的增高,新型ICAFC电池稳定的开路电压、电流密度和电池性能均随之提高;向电池液态锡阳极通入体积比为1∶10的氢气与氦气时,电池的运行阻抗最小,电池具有良好的放电性能,连续运行寿命超过400h。  相似文献   

4.
如今,世界能源与环境问题日益严峻,其中煤炭、石油等化石燃料的粗放利用是一个很重要的原因,开发一种高效、清洁的煤炭利用技术已经迫在眉睫。直接碳固体氧化物燃料电池(Direct carbon solid oxide fuel cell,DC-SOFC)作为全固态的能量转换装置,可以直接采用固体碳作为燃料,将化学能直接转化为电能,理论上其能量转化效率接近100%。这种全固态的结构可以有效地避免液态金属阳极DCFC和复合电解质型DCFC电解液泄漏、腐蚀和由空气中的二氧化碳引起的电池性能衰减等问题。随着SOFC电池技术的迅速发展,DC-SOFC技术受到了越来越多研究者的关注,并有望成为新一代清洁能源技术。然而,由于采用固体电解质和固体碳燃料,DC-SOFC阳极反应过程复杂且影响因素众多,不同的阳极材料在性能上有着不同的表现。对此,国内外研究者为解释其阳极反应机理做了大量的工作,且不断尝试将各种新型材料用作DC-SOFC的阳极,并取得了一定的成果,对其阳极反应机理做出了合理的推断,在充分发挥DC-SOFC安全性和稳定性的同时大幅提升了其输出性能。目前,对于DC-SOFC的阳极机理,根据电池中碳燃料引入形式的不同,产生了两种不同的理论,且均有合理的实验数据支撑。而已经报道的DC-SOFC阳极材料除了最早的贵金属Pt阳极材料以外,主要有以Ni-YSZ为代表的Ni基复合金属陶瓷阳极材料、以Cu-Ni-YSZ为代表的Cu基复合金属陶瓷阳极材料、以Ag-GDC为代表的Ag基复合金属陶瓷阳极材料及以LST或LSCT为代表的混合离子和电子导体阳极材料(MIECs)。大量研究表明,在金属陶瓷阳极中加入Fe、Sn等具有催化功能的元素能有效增加电池的输出功率,提高燃料的利用效率。这些材料虽然在输出性能上表现不一,但是均存在各自的优势,为DC-SOFC的研究提供了不同的思路。此外,以现有材料为基础,对阳极结构进行优化,进一步提升电池的输出性能,也为未来的阳极材料研究提供了新的方向。本文系统地总结并分析了DC-SOFC阳极结构特性、反应机理以及各类不同阳极材料的最新研究进展,展望了直接碳固体氧化物燃料电池阳极材料的未来发展方向,以期为DC-SOFC阳极材料的高效研究提供有价值的参考。  相似文献   

5.
微生物燃料电池(Microbial Fuel Cell,MFC)阳极是细菌附着、电子传递、底物和产物传输的场所,是影响电池性能的关键因素之一。综述了应用于MFC中阳极材料,如不同结构碳材料的优劣、金属及金属氧化物的性能,也对阳极材料的表面改性方法进行了汇总。  相似文献   

6.
碳负极材料是迄今为止综合性能最好的锂离子电池负极材料。通过对碳材料微观结构的设计,能够显著改善锂离子电池的能量密度、功率密度和循环寿命,适应新能源汽车对动力电池的要求。与传统石墨负极材料相比,硬碳具有嵌锂容量高、倍率性能好以及循环寿命长等优点。研究者通过改变碳源、优化制备工艺,相继制备了一系列结构独特性能优异的硬碳材料。基于硬碳基锂离子电池负极材料的最新研究进展,总结了以不同碳源制备硬碳材料的研究工作,并简要分析了硬碳的微观结构对材料嵌锂性能的影响。最后总结并指出了该领域亟待解决的问题以及未来的发展方向。  相似文献   

7.
随着锂离子电池的发展和钠离子电池的兴起,硬碳材料作为一种新型负极材料,受到了广泛关注。硬碳来源丰富,价格便宜,具有比锂离子电池石墨负极更高的储锂容量和优异的倍率性能,并且是最有商业化潜质的钠离子电池负极材料。然而,硬碳普遍存在电池首周库仑效率低的问题,且对于硬碳的储锂/钠机制仍存在争论,其比容量仍有较大的提升空间。近年来,研究人员围绕硬碳负极材料的电化学机理展开了各种研究和模型假设,针对硬碳负极存在的问题,提出了各种解决策略。本文介绍了硬碳的基本结构和常用的制备方法,并结合硬碳的优势,梳理了硬碳在锂离子电池和钠离子电池中的应用情况,重点介绍了其在快充、包覆等细分领域的应用进展,并分别针对硬碳提升比容量和改善首周库仑效率的需求,归纳了孔结构设计、元素掺杂、优化材料与电解液界面等不同改性策略。  相似文献   

8.
锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2)通过异质原子掺杂改善纳米碳材料的电化学性能;(3)将纳米碳与其他储锂材料复合形成复合电极材料。本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来...  相似文献   

9.
微生物燃料电池(MFC)是一种以微生物为催化剂将化学能转化为电能的新型洁净能源装置。与其他技术相比,微生物燃料电池(MFC)在处理污水的同时能够产电。现有的MFC装置以及电极材料、隔膜等均未达到预期的效果,通过了解MFC的结构及机理,主要针对目前MFC低产电、高成本的现状,从电池电极材料、催化剂和隔膜等几方面综述了近几年的发展。阳极作为产电微生物的载体,是影响电池性能的关键。碳基材料由于其成本低、导电性好、有利于产电微生物的附着,被作为理想的阳极材料。着重介绍了阳极碳基材料的修饰及新型材料的合成。  相似文献   

10.
董友珍 《材料导报》2014,28(23):118-122,127
目前直接甲醇燃料电池中阴极催化剂一般是贵金属铂,它的主要问题是成本高、对甲醇无耐受性及易中毒等。碳材料由于成本低、能大量制备和易于修饰等优点而被广泛应用于各个领域,如电催化、锂离子电池、超级电容器等。综述了近年来碳基纳米材料作为阴极催化剂的研究进展,包括碳纳米管、石墨烯、介孔碳等多种碳材料。主要通过对这些碳材料进行元素掺杂和以它为载体与非贵金属材料复合来提高和改善催化剂的性能。最后对未来发展提出了展望。  相似文献   

11.
碱金属离子电池作为可充电电池,是目前重要的储能设备之一。它凭借能量密度大、工作电压高、无“记忆效应”、自放电小、绿色无污染等优点在近些年来受到人们的广泛关注。电极材料是影响碱金属离子电池电化学性能的重要因素之一,因此,寻求比容量高、结构稳定的电极材料是推动碱金属离子电池发展的关键。量子点/碳复合材料(QDs/C)集合量子点与碳材料的优势,是碱金属离子电池优异的候选电极材料。本文首先对量子点进行简要介绍,然后分别综述单质量子点/碳复合材料、化合物量子点/碳复合材料及异质结构量子点/碳复合材料在碱金属离子电池中的应用进展。最后,分析量子点/碳复合材料作为碱金属离子电池电极材料的优势与不足,针对目前存在的问题提出了未来发展的方向:(1)探索新型方法,解决量子点及其复合材料的团聚问题;(2)研究SEI膜的结构性能等,解决首次库仑效率偏低的问题;(3)明确反应机理,获取更优异的电化学性能。  相似文献   

12.
近些年,纳米纤维被用于燃料电池材料时具有优异的性能,引起了人们的广泛关注。静电纺丝技术是一种低成本,高效可控,操作简单的纤维制备方法。电极材料的微观形貌对于电池性能具有显著影响。将静电纺丝技术的影响因素归纳为内部参数、工艺参数和环境参数三类,分别讨论其对材料微观形貌的影响。同时对于静电纺丝所形成电池纤维结构进行了相关归纳,并对比了不同微观结构所获得的性能。此外,总结归纳了静电纺丝应用于固体氧化物燃料电池材料的最新研究进展,特别强调了复合电极材料的发展现状,以及其微观形成机理,为相关研究者提供研究思路。  相似文献   

13.
《真空》2017,(4)
本综述介绍了直接醇类燃料电池的分类以及对直接甲醇燃料电池和直接乙醇燃料电池的性能进行了比对,也介绍了几种新型催化剂的研发方法及新型碳材料催化剂载体的优势所在,也从用途和来源方面介绍了直接醇类燃料电池的未来可能应用。  相似文献   

14.
电动汽车和相关电源材料的现状与前景   总被引:4,自引:0,他引:4  
论述了电动汽车(EV)、电动汽车用镍氢电池、锂离子电池、质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)及相关材料的研发现状、产业化前景,指出以电动汽车代替燃油内燃机汽车,以氢能代替碳基燃料,是当前运输业的主要发展方向。  相似文献   

15.
固体氧化物燃料电池的研究进展   总被引:7,自引:1,他引:6  
固体氧化物燃料电池是一种全固态燃料电池,其制造技术被认为是集精细陶瓷技术之大成,系统介绍了固体氧化物燃料电池的特点,4种关键材料的组成与性能,电池结构与制备工艺,存在的问题及解决途径。  相似文献   

16.
凭借着钠资源储量丰富和成本优势,钠离子电池在电化学储能领域有望成为锂离子电池的重要补充。作为钠离子电池负极材料,炭及其复合材料可以通过合理的结构设计和组分调控获得优异的储钠性能。随着可穿戴电子器件日益普及,人们对电极提出了更高的性能要求。自支撑电极无需使用电化学惰性的黏结剂和导电添加剂等组分,有利于提升电池体系能量密度。本文总结了近年来钠离子电池用自支撑炭基电极材料的最新研究进展,包括碳纳米纤维、碳纳米管、石墨烯及其复合材料,从基底有无的角度详细综述并讨论了自支撑炭基负极的制备策略及其电化学性能,最后对钠离子电池用自支撑炭基负极材料的未来挑战和发展进行了展望。  相似文献   

17.
“双碳”战略要求新型储能器件具备更高的能量密度和更低的成本。锂硫电池因其低成本、环保和高比能(2600 Wh kg-1)等优势,而成为储能领域中最具潜能的电池体系,已受到了广泛的关注及研究。近年来,锂硫电池已取得了系列进展,但仍面临一些问题与挑战,包括硫固有的电荷传输效率差、可溶性多硫化物的“穿梭效应”、充放电过程中的剧烈体积膨胀及锂枝晶的生长等,这些问题会导致锂硫电池性能下降甚至失效。碳基硫宿主具有多孔、高电导、轻质、大比表面积等优点,能够有效解决以上难题,已成为锂硫电池研究领域中的重要方向。而碳材料种类繁多,有碳纳米纤维、碳纳米管、碳纳米片、碳纳米花等,不同形貌或具备不同纳米尺度维度的碳纳米结构对锂硫电池的性能具有不同的影响规律。基于此,本文围绕高性能锂硫电池碳基硫宿主进行综述,分类综述了一维、二维、及多维复合碳材料在锂硫电池领域的应用及其性能,阐述不同维度碳基硫宿主对其电化学性能的影响规律,并对未来的研究方向进行了一定的展望。  相似文献   

18.
2006年11月20~22日在日本东京召开了第47届电池研讨会。会议的主要议题有:电池的反应结构、新电池材料、高输出功率电池、燃料电池等。大会宣讲论文276篇。其中,锂电池130篇,占47%;燃料电池103篇,占37%;电容器21篇;镍氢电池7篇:铅蓄电池7篇;其它8篇。在锂电池中,正极材料57篇;负极材料26篇。在燃料电池中,固体高分子燃料电池(PEFC)76篇;直接甲醇燃料电池(DMFC)21篇:固体氧化物燃料电池(SOFC)6篇。  相似文献   

19.
碳基材料具有丰富多元的形态和优异的性能,是目前储能材料的重要组成部分。简要评述碳基材料作为锂空气电池阴极时结构与性能的关系,讨论碳基材料的结构设计与功能调控的重要性,指明碳基材料在锂空气电池中的研究重点,并对其在锂空气电池中的应用进行了展望。  相似文献   

20.
主要对碳基固体氧化物燃料电池(SOFC)中三传二反的控制方程、不同尺度的不同物理场理论模型以及碳基燃料的重整、催化和硫化等方面进行概括总结。SOFC有可使用氢气、一氧化碳、甲烷和其他的碳氢化合物作为燃料进行电化学反应的燃料灵活性,但使用碳氢燃料需要解决诸如碳基燃料的重整、电极的催化、积碳和硫化等问题。电池内部反应气体的物质输运、电荷输运、能量输运、动量输运和化学及电化学反应状态均可以用偏微分方程来描述。运用这些电化学反应和输运的偏微分方程,结合材料的微观性质,可以建立SOFC的多尺度多物理场模型。通过理论模型研究材料微结构与性质、工作条件、几何构型等参数对电池性能的影响,对SOFC材料组成与电池堆结构进行定量分析和优化设计,可以加速SOFC技术的更快发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号