首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a comprehensive review is presented regarding structure, synthesis, and properties of nanofillers such as graphene oxide, nanobifiller of graphene oxide, and their polymeric nanocomposite. The information about hybrid properties and synthesis of graphene oxide–carbon nanotube, graphene oxide–montmorillonite, and graphene oxide–nanodiamond is presented. Use of nanobifiller in polymer/graphene oxide–carbon nanotube, polymer/graphene oxide–montmorillonite, and polymer/graphene oxide–nanodiamond composites was summarized. Area of polymer and graphene oxide-based nanobifiller composites is less studied in literature. Therefore, nanobifiller technology limitations and research challenges must be focused. Polymer/graphene oxide nanobifiller composites have a wide range of unexplored potential in technological areas such as automobile, aerospace, energy, and medical industries.  相似文献   

2.
In this review, properties and potential of carbon nanotube, nanodiamond, and nanodiamond–carbon nanotube hybrid nanobifiller have been discussed with reference to electromagnetic interference shielding materials. The nanodiamond and carbon nanotube nanofiller and nanodiamond–carbon nanotube nanobifiller have outstanding electrical, thermal, and mechanical features. Main focus of review was electromagnetic interference shielding phenomenon and its implication in polymer/nanodiamond, polymer/carbon nanotube, and polymer/nanodiamond–carbon nanotube nanobifiller composite. The epoxy/nanodiamond, epoxy/carbon nanotube, and epoxy/nanodiamond–carbon nanotube composites have been discussed with electromagnetic interference shielding shielding features. Thus, considerable enhancement in electromagnetic interference shielding shielding features was observed using higher nanodiamond, carbon nanotube, and nanodiamond–carbon nanotube loadings. Significance and future potential of these polymeric composite are specified.  相似文献   

3.
ABSTRACT

This review addresses fundamentals and progress in field of thermally conducting polymer/nanocarbon nanocomposite. Upsurge in thermal conductivity of materials may lead to rapid heat diffusion, which in turn may prevent degradation. Thermally conductive nanofillers (carbon nanotube, graphene, nanodiamond, inorganics) have been effectively employed to form desired nanocomposite. In polymer/nanocarbon nanocomposites, thermal conductivity depends on nanofiller type, dispersion, loading level, polymer nature, morphology, and crystallinity. Thermal conductivity parameter has been significantly considered in aerospace, automotive, electronics, and energy-related industries, where thermal dissipation has become a challenging problem. In future, it is desired to design high performance nanocomposites with manageable thermal conduction.  相似文献   

4.
Low-dimensional carbonaceous nanofillers (LDCNs), i.e., fullerene, carbon nanofiber, carbon nanotube, and graphene, have emerged as a new class of functional nanomaterials world-wide due to their exceptional electrical, thermal, optical, and mechanical properties. One of the most promising applications of LDCNs is in polymer nanocomposites; these materials endow the polymer matrix with significant physical reinforcement and/or multi-functional capabilities. The relations between properties, structure and morphology of polymers in the nanocomposites offer an effective pathway to obtain novel and desired properties via structure manipulation, wherein the interfacial crystallization and the crystalline structure with the matrix are critical factors. By now, extensive studies have reported that LDCNs are highly effective nucleating agents that can significantly accelerate their crystallization kinetics and/or induce unique crystalline morphologies in nanocomposites. This review presents a thorough survey of the current literature on the issues relevant to LDCN-induced polymer crystallization. After a brief introduction to each type of LDCN and its derivatives, LDCN-induced crystallization kinetics with or without flow fields, crystalline modification, and interfacial crystalline morphologies are thoroughly reviewed. Then, the origins of LDCN-induced polymer crystallization are discussed in depth based on molecular simulation and experimental studies. Finally, an overview of the challenges in probing LDCN-induced polymer crystallization and the outlook for future developments in polymer/LDCN nanocomposites conclude this paper. Understanding LDCN-induced polymer crystallization offers a helpful guidance to purposefully regulate the structure and morphology, then achieving high-performance polymer/LDCN nanocomposites.  相似文献   

5.
In this review, potential and properties of carbon nanotube, graphite, graphene oxide, and clay nanofiller have been deliberated with reference to aerospace application. The polymers discussed as matrices are polypropylene, polyaniline, polyurethane, polystyrene, and polyamide. Main focus of the review is to converse space competency of polymer/carbon nanotube, polymer/graphite, polymer/graphene oxide, and polymer/clay nanocomposite. The effect of nanofiller addition on the desired aerospace properties of polymeric nanocomposite has been conversed. Attractive features are high glass transition temperature, thermal stability, high modulus, chemical resistance, and nonflammability. Toward the end, challenges in the enhancement of materials’ properties for aerospace relevance have been considered.  相似文献   

6.
In this review, particular importance is given to the fabrication and properties of carbon nanotube and graphene oxide-based paper-like materials (buckypapers). Different strategies for the reduction and functionalization of graphene oxide were also discussed. The chemistry of buckypapers is conversed with special emphasis on structure and essential characteristics of buckypaper. Various techniques for buckypaper processing have been critically reviewed including significance of each method. Moreover, importance of polymer/graphene oxide and polymer/carbon nanotube composite papers has been highlighted. Due to outstanding physical, thermal, and electrical properties, polymer-based buckypapers are potentially important as nanofilters, fuel cell components, and miniaturization of electrical connections.  相似文献   

7.
Keledi G  Hári J  Pukánszky B 《Nanoscale》2012,4(6):1919-1938
This feature article discusses the main factors determining the properties of polymer nanocomposites with special attention paid to structure and interactions. Usually more complicated structure develops in nanocomposites than in traditional particulate filled polymers, and that is especially valid for composites prepared from plate-like nanofillers. Besides the usually assumed exfoliated/intercalated morphology, i.e. individual platelets and tactoids, such nanocomposites often contain large particles, and a network structure developing at large extent of exfoliation. Aggregation and orientation are the most important structural phenomena in nanotube or nanofiber reinforced composites, and ag-gregation is a major problem also in composites prepared with spherical particles. The surface characteristics of nanofillers and interactions are rarely determined or known; the related problems are discussed in the paper in detail. The surface of these reinforcements is modified practically always. The goal of the modification is to improve dispersion and/or adhesion in nanotube and spherical particle reinforced composites, and to help exfoliation in nanocomposites containing platelets. However, modification decreases surface energy often leading to decreased interaction with the matrix. Very limited information exists about interphase formation and the properties of the interphase in nanocomposites, although they must influence properties considerably. The properties of nanocomposites are usually far from the expectations, the main reason being insufficient homogeneity, undefined structure and improper adhesion. In spite of considerable difficulties nanocomposites have great potentials especially in functional applications. Several nanocomposite products are already used in industrial practice demonstrated by a few examples in the article.  相似文献   

8.
ABSTRACT

To assess the potential value of polydimethylsiloxane (PDMS), an essential silicone polymer, it is important to determine the effective integration of nanoparticles in nanocomposites. This review basically outlines various facets of reinforced PDMS materials focusing foremost characteristics, processing, and methodological applications. The main sections are dedicated to nanocomposite categories as PDMS/nanodiamond, PDMS/graphene, PDMS/carbon nanotube, PDMS/carbon black, PDMS/quantum dot, and PDMS/inorganic nanoparticle. Moreover, significant applications of PDMS-based nanocomposites in coatings, membranes, foams, and sensors are debated. High-performance PDMS nanocomposites reveal fine electrical/thermal conductivity, robustness, thermal stability, anti-corrosion, permeability, compressibility, and superhydrophobicity/oleophilicity. Toward ending, challenges and future potential of PDMS-based nanocomposite have been conversed.  相似文献   

9.
The carbonaceous nanofillers such as graphene and graphene oxide play competent role due to fine structural and functional properties having wide range of technical applications. This paper reviews structure and flame-retardant properties of graphene and graphene oxide. These nanofillers form promising nanomaterials for next generation high-performance structural and multifunctional composite structures. One of the major difficulties to produce strong and thermally conductive graphene/graphene oxide composites is fine dispersion of carbon nanomaterials. Consequently main focus of review is on flame retardancy of organic filler-based nanocomposite. To the end, techniques for nonflammability property measurement of polymer/graphene and polymer/graphene oxide have been discussed.  相似文献   

10.
Polyurethane foam is a polymeric material having cellular structure. Multifunctional polyurethane foams reinforced with nanofiller have combined enhanced specific properties with density reduction. This article primarily considers important aspects of various foam processing techniques. Numerous nanofillers such as graphite, graphene, graphene oxide, carbon black, carbon nanotube, nanoclay, and inorganic nanoparticle have been reinforced in polyurethane foam. Particular attention is given to various categories of polymer/carbon nanofiller and polymer/inorganic nanofiller composite foams. Applications of polyurethane composite foams have been focused with relevance to aerospace and automotive industry, radar absorbing and electromagnetic interference shielding, oil absorbants, sensors, fire proof, shape memory, and biomedical materials.  相似文献   

11.
The use of polystyrene-based materials has become very important due to a wide range of industrial applications. Different types of nanofillers such as fullerene, carbon black, graphite, graphene, and carbon nanotube have been used with polystyrene to attain high-performance materials. Fabrication and unique properties of composites are considered here. Use of fullerene to improve thermal stability of polystyrene/fullerene composite has been explored. Polystyrene /carbon black composite have found to improve thermal, electrical, and rheological properties. Polystyrene/graphite nanosheet composite have been used in different applications due to mechanical and electrical properties. Polystyrene/carbon nanotube composite have been studied for enhanced tribological properties.  相似文献   

12.
二维片状的石墨烯不仅具有优异的力学、热学和电学性能,而且还具有较好的微波吸收特性。自它被发现以来,一直受到科学界的广泛关注,目前已有学者将其与聚合物复合,制备了石墨烯/聚合物纳米复合材料,这种新型微波吸收材料不仅吸波效果好而且密度小、易加工。目前石墨烯/聚合物纳米复合材料用于微波吸收的报道还比较少,该研究基本处于起步阶段。本文首先概述了石墨烯独特的物理结构和优异的力学、热学、电学性能,然后综述了石墨烯/聚合物纳米复合材料的制备方法,并分析了其微波吸收机理,最后结合国内外研究现状展望了石墨烯/聚合物纳米复合材料制备与微波吸收性能研究的发展方向,指出调控复合材料的微观形貌,对石墨烯进行磁性掺杂,探索石墨烯与聚合物微波吸收的协同效应将成为今后研究的重点和热点。  相似文献   

13.
This review is a comprehensive source for synthesis, functionalization, and physical properties of polymer/carbon nanotube nanocomposites. The effectiveness of processing methods for carbon nanotube reinforcement in matrix for proper dispersion and appropriate interfacial adhesion is discussed. The novelty of polymer/carbon nanotube buckypaper fabrication with preformed networks through microfiltration of nanotube suspension has also been discussed. Moreover, preparation, properties, and manufacturing proficiencies of buckypaper are reviewed. Different approaches of intertwining buckypaper through infiltration, compression, soaking, and dry transfer have been analyzed. The polymer/carbon nanotube buckypaper obtained by vacuum infiltration has micron-scale bicontinuous morphology and improved thermal properties due to effectual heat transfer within nanotube rich phase.  相似文献   

14.
Several conducting polymers, including polyaniline, polypyrrole, polythiophene, polyvinylpyrrolidone, poly(3,4-ethylenedioxythiophene), poly(m-phenylenediamine), polynaphthylamine, poly(p-phenylene sulfide), and their carbon nanotube reinforced nanocomposites are discussed in this review. The physical, electrical, structural and thermal properties of polymers along with synthesis methods are discussed. A concise note on carbon nanotubes regarding their purification, functionalization, properties and production are reported. Moreover, the article focuses upon synthesis methods, properties and applications of conducting polymer/carbon nanotube nanocomposites are focused. Nanotube dispersion, loading concentration and alignment within conducting polymer/carbon nanotube nanocomposite affect their performance and morphology. The conducting polymer/carbon nanotube nanocomposites are substantially used in sensors, energy storage devices, supercapacitors, solar cells, EMI materials, diodes, and coatings.  相似文献   

15.
Polyacrylonitrile (PAN) is one of the versatile commercially important acrylic polymers. It is a well-known polymer due to its enhanced mechanical, thermal, and chemical properties. Various nanofillers have been incorporated in PAN to significantly improve the mechanical, thermal, and electrical properties of resulting nanocomposite. This review comprehends efforts devoted to PAN-based nanocomposite reinforced with carbon nanotube, graphene, and graphene oxide. The interaction between PAN and carbon nanostructure has been concentrated to develop high-performance nanocomposite. The scientific and technological development in the field of PAN/carbon nanofiller nanocomposite particularly in membranes, biosensor, lithium–sulfur batteries, supercapacitor, and photocatalysts has also been expressed. Moreover, future prospects in scientific and technological disciplines have been addressed.  相似文献   

16.
Graphene nanoribbons (GNRs), obtained by different methods from carbon nanotubes (CNTs) or graphene, are attractive materials for polymer nanocomposites due to their considerably high interfacial area, as compared to CNTs. Consequently, a better adhesion with a polymer matrix is anticipated for GNRs. Also, surface modification of these nanofillers, such as nitrogen doping, is known to be an efficient method to improve their properties. In this work, fluoroelastomers (FKM) were used as the polymer matrix to host GNRs. Undoped and nitrogen doped GNRs were synthesized from the parent multiwall carbon nanotubes (MWCNTs). MWCNT/FKM and GNR/FKM nanocomposites were prepared via a solution mixing/melt mixing protocol.  相似文献   

17.
This paper reviews recent advances in the nanotube and graphene polymer composites synthesized in our laboratories for laser protection application, i.e., OL. We first discuss the mechanisms involved in the polymer nanocomposites for OL and the Z-scan technique used to measure the nonlinear optical properties of the materials in question. Subsequently, the design, synthesis, characterization, and OL properties of the representative nanotube and graphene polymer composites are introduced, followed by a prospect for use of carbon nanomaterial polymer composites for optical limiting.  相似文献   

18.
This study fabricated nanocomposites consisting of epoxy‐based shape memory polymer (ESMP) matrix and carbon nanofillers. The nanofillers include zero‐dimensional carbon black, one‐dimensional multiwalled carbon nanotubes, two‐dimensional (2D) graphene nanoplatelets, and three‐dimensional (3D) functionalized graphene sheets, which are all efficient microwave‐absorbing materials that can transform microwaves into heat energy. As a result, the temperatures of the nanocomposites increased more rapidly than pristine ESMP in microwaves. The functionalized graphene sheets were found to transform the microwaves into heat more efficiently than the other nanofillers. Possible microwave propagation paths in the nanocomposites were proposed. Moreover, the nanocomposites displayed significantly higher mechanical strengths than pristine ESMP. The low cost and strong nanocomposites with fast microwave responses may be applied as actuators or deployable devices in medical treatments. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45676.  相似文献   

19.
With recent development in the field of polymer-based composite paper, buckypaper technology has gained considerable research attention. Conventionally, polymeric composites have been fabricated using carbon nanofiller (carbon nanotube, graphene, and graphene oxide) reinforcement in polymer matrix. In buckypaper technology, freestanding thin porous nanofiller network is formed using various papermaking techniques, which may further improve physical properties of polymer/carbon nanofiller buckypaper composite. This review also aims to report technical aspects of polymer/carbon nanotube, polymer/graphene, and polymer/graphene oxide-based composite paper. Special emphasis is given to the application of polymer/carbon nanofiller buckypaper in fuel cell, batteries, sensor, artificial muscles, fire retardant materials, and liquid crystal cells.  相似文献   

20.
Adding fillers reinforces the modulus of the polymer, but the ductility is sacrificed. Such a phenomenon is especially true for brittle polymers like polystyrene (PS). Nanofillers are known to solve the problem because the high aspect ratio and surface area may improve the stiffness at a much lower loading level, and thus significantly reduce the ductility. However, the dispersion of nanofillers is always challenging. In the current investigation, PS nanocomposites were prepared by melt compounding, ultrasonication, and solution compounding to investigate the effect of the addition of the following carbon nanomaterial to the mechanical properties: nanographite (H25), multiwalled carbon nanotube, carbon nanofiber, and thermally reduced graphene (TRG). Among them, TRG exhibited the best reinforcing effect. Young's modulus of PS increased by 27% with only 0.1 wt% loading of TRG, and the ductility remained unchanged. Such an improvement has rarely been reported in thermoplastic polymer nanocomposites. The results were carefully analyzed and compared with those reported in the available literature. In this study, the solution compounding method offered the best modulus value. The aspect ratio of carbon nanomaterials in the composite was estimated by the Halpin-Tsai equation. These estimations agree well with the transmission electron microscopy microstructure results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号