首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
郝蕾  虞小鹏  史峥 《微电子学》2017,47(3):293-297
设计了一种用于射频系统的低功耗、中速中精度差分输入逐次逼近型(SAR)A/D转换器。采样完成后采用下极板对接的逻辑算法,10位SAR A/D转换器只需9位DAC即可满足其精度要求。DAC阵列采用分段电容结构,节省了芯片面积。比较器采用前置运算放大器加锁存器的结构,达到了同时兼顾速度和精度的要求。该A/D转换器芯片采用GSMC 0.13 μm 1P7M CMOS工艺制造,其核心电路尺寸为500 μm×360 μm,采用1.2 V的单电源供电。测试结果表明,当采样频率为10 MS/s,输入信号频率为2 MHz时,该SAR A/D转换器达到8.45位的有效精度,总功耗为2.17 mW;当采样频率为5 MS/s,输入信号频率为1 MHz时,该SAR A/D转换器达到8.75位的有效精度,总功耗为2.07 mW。  相似文献   

2.
设计了一种12位逐次逼近A/D转换器.该A/D转换器具有四种信号输入范围,利用电阻网络使不同量程的模拟输入与内部DAC输出范围保持一致,从而使用相同的比较器和基准实现对不同范围输入信号的A/D转换;采用一种新型分段电流源结构,利用电流信号实现内部DAC及逐次比较功能.该电路采用2 μm LC2MOS工艺实现,其积分线性误差(INL)和微分线性误差(DNL)均为±1/2 LSB,最大转换时间为12 μs.  相似文献   

3.
基于0.18μm CMOS工艺,设计了一种电源电压为3.3 V/1.8 V(模拟电路部分电源电压为3.3 V,数字电路部分电源电压为1.8 V)、最大刷新率为200 MSPS、分辨率为14位的高速D/A转换器(DAC).该DAC采用传统的5-4-5温度计码与二进制权重码混合编码的分段电流舵结构.对电路中的关键模块,如运算放大器、带隙基准源,进行了优化设计;给出了整体电路的版图设计.仿真结果显示,采样频率为200 MHz时,DAC的SFDR为87 dB左右.  相似文献   

4.
介绍了一种基于0.35μmGeSi-BiCMOS工艺的1GSPS采样/保持电路。该电路采用全差分开环结构,使用局部反馈提高开环缓冲放大器的线性度;采用增益、失调数字校正电路补偿高频输入信号衰减和工艺匹配误差造成的失调。在1GS/s采样率、484.375MHz输入信号频率、3.3V电源电压下进行仿真。结果显示,电路的SFDR达到75.6dB,THD为-74.9dB,功耗87mW。将该采样/保持电路用于一个8位1GSPSA/D转换器。流片测试结果表明,在1GSPS采样率,240.123MHz和5.123MHz输入信号下,8位A/D转换器的SNR为41.39dB和43.19dB。  相似文献   

5.
基于65 nm CMOS工艺,设计了一种新型的CMOS主从式采样/保持电路。采用全差分开环主从式的双通道采样结构,提高了电路的线性度。采用负电压产生技术,解决了纳米级工艺下电源电压低的问题。采用Cadence Spectre软件对电路进行仿真分析。仿真结果显示,在1.9 V电源电压、相干采样下,当输入频率为1.247 5 GHz,峰-峰值为0.4 V的正弦波信号,采样率为2.5 GS/s,负载为0.8 pF时,电路的无杂散动态范围(SFDR)为78.31 dB,总谐波失真(THD)为-75.69 dB,有效位为11.51位,可用于超高速A/D转换器中。  相似文献   

6.
设计了一种可以与晶体管跨导运算放大器特性高度比拟的运放宏模型.用该宏模型替换采样/保持电路和MDAC模块中的晶体管级放大器电路,进行FFT分析;在仿真结果相差3.2%的情况下,仿真时间为原来的1.7%,大大缩短了流水线ADC的验证周期.在该方法的指导下,设计了一个10位20 MS/s 流水线A/D转换器.在2.3 MHz输入信号下测试,该A/D转换器的ENOB为8.7位,SFDR为73 dBc;当输入信号接近奈奎斯特频率时,ENOB为8.1位.  相似文献   

7.
介绍了一种采用0.5μm CMOS工艺的轨到轨输入共栅共源带输出阻抗增强结构的跨导放大器电路。该放大器用在一个8倍过采样率,输出速率500 kps的16位二阶Σ-Δ加流水线型结构的A/D转换器中,位于Σ-Δ环路的第一级,完成过采样、相减求差和残差放大的功能,是整个A/D转换器的重要模拟电路单元。在5 V电源电压下,该放大器的仿真结果为直流增益大于90dB,单位增益带宽大于100 MHz,相位裕度大于75°。  相似文献   

8.
基于TSMC O.25μm CMOS工艺,采用分段开关电流结构,设计了一种基于2.5 V电源电压的14位400MS/s D/A转换器.该D/A转换器内置高精度带隙基准源、高速开关驱动电路和改进的Cascode单位电流源电路,以提高性能.D/A转换器的积分非线性(INL)和微分非线性(DNL)均小于0.5 LSB.在400 MHz采样频率、199.8 MHz输出信号频率时,其无杂散动态范围(SFDR)达到85.4 dB.  相似文献   

9.
介绍了一种采用0.35μm BiCMOS工艺的双路双差分采样保持电路。该电路分辨率为8位,采样率达到250 MSPS。该电路新颖的特点为利用交替工作方式,降低了电路对速度的要求。经过电路模拟仿真,在250 MSPS,输入信号为Vp-p=1 V,电源电压3.3 V时,信噪比(SNR)为55.8 dB,积分线性误差(INL)和微分线性误差(DNL)均小于8位A/D转换器的±0.2 LSB,电源电流为28 mA。样品测试结果:SNR为47.6 dB,INL、DNL小于8位A/D转换器的±0.8 LSB。  相似文献   

10.
提出了一种基于两步转换法(5 6)的高速高精度A/D转换器体系结构,其优点是可以大幅度降低芯片的功耗及面积。采用这种结构,设计了一个10位40 MHz的A/D转换器,并用0.6μm BiCMOS工艺实现。经过电路模拟仿真,在40 MHz转换速率,1 V输入信号(Vp-p),5 V电源电压时,信噪比(SNR)为63.3 dB,积分非线性(INL)和微分非线性(DNL)均小于10位转换器的±0.5 LSB,电源电流为85.4 mA。样品测试结果:SNR为55 dB,INL和DNL小于10位转换器的±1.75 LSB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号