共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
4.
5.
6.
7.
随着生物医学技术的发展,组织样本经常被多种荧光标记物标记,需要通过光谱成像的方法区分出样本中不同的成分。本文在共聚焦显微镜基础上,介绍了一种由精密丝杠和步进电机控制的狭缝机构实现光谱成像的方法,讨论了狭缝缝片的具体设计和狭缝运动精度对光谱带宽和波长准确度的影响。 相似文献
8.
9.
10.
生物芯片及其荧光信号检测 总被引:4,自引:2,他引:2
系统介绍了生物芯片的概念和制造方法,重点讨论了生物芯片的荧光检测方法,并对不同的检测方法进行了对比和分析.总体来说,激光共聚焦芯片扫描仪的荧光检测灵敏度和扫描分辨力较高,而CCD芯片扫描仪的荧光检测灵敏度和扫描分辨力较低,但CCD芯片扫描仪的检测速度较快,成本也较低. 相似文献
11.
12.
Imaging of cells in two dimensions is routinely performed within cell biology and tissue engineering laboratories. When biology moves into three dimensions imaging becomes more challenging, especially when multiple cell types are used. This review compares imaging techniques used regularly in our laboratory in the culture of cells in both two and three dimensions. The techniques reviewed include phase contrast microscopy, fluorescent microscopy, confocal laser scanning microscopy, electron microscopy, and optical coherence tomography. We compare these techniques to the current \"gold standard\" for imaging three-dimensional tissue engineered constructs, histology. 相似文献
13.
Three-dimensional (3-D) imaging in confocal microscopes is considered in terms of 3-D transfer functions. This leads to an explanation of axial imaging properties. The axial response was observed in both object-scanning and beam-scanning microscopes and the influence of off-axis examination investigated. By simple processing of multi-detector signals, imaging in both the axial and transverse directions can be improved. 相似文献
14.
在激光扫描共聚焦显微成像技术基础上引入了光谱成像技术以便区分生物组织中的不同荧光成分。采用分光棱镜对荧光进行光谱展开,在光谱谱面处设置两个可移动缝片形成出射狭缝,两个步进电机带动安装其上的两个缝片设置系统在整个工作波长(400~700nm)内的光谱带宽,其最小光谱带宽优于5nm。用488nm激光和低压汞灯实际测量了几条谱线对应的狭缝位置并和理论值做了比较,结果显示实际狭缝位置和理论值的差值均小于0.1mm。在全光谱和50μm出射狭缝(对应2.5nm光谱带宽)对老鼠肾脏组织进行了共聚焦光谱成像实验,获得了老鼠肾脏组织中DAPI标定的细胞核图像和AlexaFluor®488标定的肾脏小球曲管图像,实现了对老鼠肾脏组织不同成分的区分。实验结果表明:提出的系统能够进行共聚焦光谱成像,扩大了共聚焦显微镜的适用范围。 相似文献
15.
16.
The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in‐house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser‐scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three‐dimensional metrology of critical internal structures in lab‐on‐a‐chip devices because scans can be performed rapidly and noninvasively prior to their use. 相似文献
17.
18.
ATOS流动式光学扫描仪的工作原理与系统标定 总被引:3,自引:0,他引:3
介绍了ATOS流动式光学扫描仪的结构光三维扫描法工作原理和系统标定方法。仪器经标定后,通过多组固定参考点进行拟合计算,能自动拼合出被测工件的完整三维图形。 相似文献