首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
张文绍 《中外能源》2011,16(1):84-89
洛阳分公司于2008年对Ⅱ套重油催化裂化装置进行FDFCC-Ⅲ技术改造,原有反应再生系统流程不变,新增汽油提升管反应器及副分馏塔系统,改造后重油加工能力为1.4Mt/a,汽油改质加工能力为846kt/a。FDFCC-Ⅲ生产运行期间,混合原料油的密度、残炭、硫含量和重金属含量都低于改造前RFCC的值,性质得到大幅改善;操作参数中,反应温度、回炼比和主风用量大幅降低,剂油比由RFCC时的7.1大幅提高到9.8;产品分布中,总轻质液体收率提高了3.81个百分点,丙烯收率提高了4.16个百分点,但轻质油收率下降了6.44个百分点;粗汽油经改质后,汽油硫含量由0.335%降到0.143%,脱硫率达到57.3%,烯烃含量由37.86%降到12.92%,汽油RON、MON分别提高了4.1和3.8个单位;轻柴油的质量没有明显变化;氢转移反应的程度HTC值为1.16,热裂化反应的程度FTC值为2.94;催化剂单耗为0.7kg/t原料。通过优化原料性质,将再生方式由常规再生改为完全再生,并投用外取热器,灵活调整汽油提升管反应温度,控制汽油进料温度在100~120℃、催化剂混合器温度低于再生剂温度50~70℃、重油提升管反应温度在480~485℃,增加副分馏塔中段到气体脱硫装置溶剂再生塔底重沸器流程等措施,实现节能降耗。  相似文献   

2.
中国石化洛阳分公司二套联合催化装置设计为140×104t/a同轴式重油催化裂化装置。2008年5月进行FDFCC-Ⅲ技术改造,进料性质由减压蜡油改为加氢蜡油后,装置的能耗基本维持在65kg标油/t原料以下。2010年6~8月份能耗分别为66.51kg标油/t原料、79.90kg标油/t原料和71.3kg标油/t原料,均超出年度能耗目标值65kg标油/t原料。深度分析显示,装置设备运行异常,非计划停工、检修,是造成装置生焦率、电耗、蒸汽升高的主要原因;计量检测仪表不准,能耗统计、分摊及进出热物料的平衡计算是造成装置能耗升高的次要原因。通过提高设备检修质量,加强设备维护管理,避免非计划停工,以及认真统计、核算,上报相关数据等措施,9月份装置的能耗降为60.83kg标油/t,较8月份的71.3kg标油/t原料,降低了10.47kg标油/t原料。装置1~9月份累计能耗达到65.35kg标油/t原料,已接近2010年能耗目标值65kg标油/t原料。  相似文献   

3.
华北石化250kt/a催化轻汽油醚化装置流程简单,造成总的C_5活性烯烃转化仅为30.0%,产品中甲醇含量高达0.5%~0.6%,烯烃含量仅降低5.0个百分点,生成的高辛烷值醚化物少。经醚化后,汽油产品辛烷值基本无变化。由于以上原因,决定采用LNE-3工艺技术对原装置进行改造,将加工规模由250kt/a扩建为300kt/a。主要改造内容为:新增催化蒸馏上塔、催化蒸馏下塔、甲醇回收塔、甲醇净化器、萃取水净化器等设备;在第一醚化反应器、第二醚化反应器之间增设冷却器,以进一步提高活性烯烃转化率;增设催化蒸馏上塔塔底重沸器,以回收高温凝结水热量,可节省能量4.12kg标油/t催化轻汽油。装置改造后运行平稳,总的C_5活性烯烃转化率达到92.70%,醚化产品及剩余C_5中甲醇含量分别降至0和0.09%,总的烯烃含量降低15.27个百分点,辛烷值提高4.6个单位,蒸汽压降低约22k Pa,装置吨油净利润达到169.76元,经济效益良好。  相似文献   

4.
潘罗其 《中外能源》2013,18(1):89-94
巴陵石化炼油联合装置以105× 104t/a MIP-CGP装置为核心,配套产品精制、气体分离及循环水、空压站等公用工程系统.该装置直接以200×104t/a常压装置的渣油为原料,具有多产高辛烷值汽油和气体烯烃的特点.针对重油催化装置高气体收率和大注汽量的工艺特点,从催化生焦理论人手,进一步分析了随着进料密度、残炭和重金属含量的增加,装置的能耗越显著,联合装置的用能优化越复杂.通过对再生器取热系统、烟气余热回收系统、蒸汽能量梯级利用、烟机系统、供风系统、加热炉燃烧器系统、高低温位热能回收以及循环水、酸性水、凝结水系统的用能分析及优化改造,充分综合利用了各类能源,减少了装置对水的消耗.炼油联合装置能耗由72.20kg标油/t原油降至61.74kg标油/t原油,吨原油取水南0,72t/t降至0.61t/t,吨原油排水由0.64t/t降至0.30t/t.  相似文献   

5.
某炼厂汽油池烯烃含量高,为了满足国Ⅵ标准B阶段汽油质量升级要求,决定采用M-PHG技术对催化汽油加氢装置进行改造。M-PHG技术采用全馏分催化汽油预加氢-轻重馏分切割-重汽油加氢改质-选择性加氢脱硫的工艺技术路线和专有催化剂,通过优化工艺参数,烯烃加氢异构、芳构化改质,在实现深度加氢脱硫的同时,大幅降低烯烃含量,辛烷值损失尽可能降低。改造实施后,装置一次开车成功,标定数据表明,催化汽油硫含量由113.3μg/g降至6.9μg/g,烯烃体积分数由41%降至31%,辛烷值损失0.8个单位,产品指标满足全厂调合生产国Ⅵ标准B阶段汽油要求。采用M-PHG技术进行国Ⅵ汽油质量升级改造,可以实现加氢脱硫、降烯烃和保持辛烷值的多重功能,且在满足改造后新工艺技术路线要求的前提下,可尽量利旧原有流程、原有设备,减少了装置改造投资。  相似文献   

6.
张世方 《中外能源》2012,17(10):60-65
广州石化蜡油催化裂化装置处理能力为2.0Mt/a,于2011年2月21日进行消除瓶颈及节能降耗改造,同时采用MIP-CGP工艺技术,即在现有多产异构烷烃基础上,采用多产液化气技术,对催化裂化装置进行改造,提高装置多产丙烯的能力,并兼顾汽油产品质量。装置于2011年5月9日一次开车成功,并于当年8月及2012年1月进行了满负荷标定。两次标定数据表明:装置改造后,液化气收率提高5.86个百分点,丙烯总量同比上升5.86个百分点,汽油收率上升0.39个百分点,汽油研究法辛烷值增加2.1个单位,柴油收率下降4.78个百分点,总液收上升1.47个百分点。受原料性质变重、残炭升高及反应温度控制在下限的影响,产品分布与设计值稍有差距。装置能耗为43.07kg标油/t,低于48.27kg标油/t的设计值,达到节能改造的目标。受原料重质化、劣质化影响,新增加的外取热器取热余量不足,导致装置满负荷高苛刻度生产时,再生温度偏高,进一步优化产品分布的操作弹性不大。  相似文献   

7.
江波 《中外能源》2009,14(10):64-68
法国Axens公司的Prime—G^+是采用固定床双催化剂的加氢脱硫技术,催化裂化全馏分汽油脱硫率可达到98%,满足生产超低硫规格汽油的要求,具有烯烃饱和量少、辛烷值损失小、液收率高、同步脱臭等特点。锦西石化120×10^4t/a催化汽油加氢脱硫装置采用该技术后,产品标定数据表明,轻汽油(LCN)硫含量分别为42.8μg/g和63μg/g,满足设计值不大于65μg/g的要求,满足京Ⅳ汽油标准;混合产品辛烷值较原料辛烷值分别下降0.9和1个单位,符合辛烷值损失不大于1,5个单位的要求;二烯烃数据满足加氢脱硫反应器进料二烯烃体积分数小于2%的标准;混合产品收率100.01%.瓦斯收率0.1726%,含硫气体收率0.08%;能耗标定分别为18.99kg标油/t和18.59kg标油/t,小于设计值19.1kg标油/t;在满负荷条件下装置运行较为平稳。MCN组分没有单独抽出,造成HCN产品硫含量略偏高。  相似文献   

8.
中国石化洛阳分公司220×104t/a蜡油加氢装置设计年开工时数8400h,主要由反应部分(包括新氢、循化氢压缩机、循环氢脱硫)、分馏部分、富氢气体脱硫部分、热回收和产汽系统以及蜡油加氢处理装置公用工程部分等组成。主要生产低硫含量的精制蜡油,为催化裂化装置提供优质原料,同时副产少量石脑油和柴油,富氢气体经脱硫后去制氢装置作原料。装置于2009年5月20日一次开车成功,设计能耗为12.96kg标油/t。开工运行一周年以来,蜡油加氢处理装置通过开展装置优化,节水、节电、节气,增大装置加工负荷,大幅降低了能耗。2009年蜡油加氢处理装置累计综合能耗为12.46kg标油/t,达到设计要求。2010年,通过节能优化措施,综合能耗从2009年的12.46kg标油/t降至8.85kg标油/t,下降3.46kg标油/t,降幅达29%,在中国石化(Sinopec)同类装置中名列前茅。  相似文献   

9.
赵剑涛 《中外能源》2009,14(12):85-88
由于生产调整,长庆石化公司140×104t/a重油催化裂化装置原料由常压渣油变为全减压渣油,原料密度增大、残炭含量增高,反应生焦量大,制约了装置的加工量。为此,试用了Endurance重油深度转化催化剂。该催化剂在对渣油原料深度转化的同时,可最大量地降低焦炭产率。试用结果表明:Endurance催化剂初活性较高,衰减慢,且持久活性表现良好,抗重金属污染能力强,催化剂性能稳定,一段转化率较好,回炼油量减少;重油裂解能力较强,可以显著提高轻柴油、液化气收率,但汽油产率略有下降;可降低汽油烯烃含量,同时会造成汽油辛烷值的降低(汽油烯烃含量下降约3个百分点,汽油辛烷值下降约1个单位),对轻柴油、液化气质量基本没有影响;可明显降低催化剂单耗,试用期间,催化剂平均单耗由原来的1.46kg/t原料下降至1.25kg/t原料。  相似文献   

10.
MIP技术因其技术独特的双反应区控制技术,有多产异构烷烃降低汽油烯烃,或多产异构烷烃的清洁汽油同时根据需要可以增产丙烯两种生产模式,可根据市场需求对生产方案进行合理调整;LTAG技术主要利用加氢单元和催化单元组合,将催化装置的LCO馏分先加氢后再进行催化裂化,通过优化匹配加氢和催化裂化的工艺参数等,实现最大化生产高辛烷值汽油和/或C_6~C_8芳烃。MIP与LTAG双提升管组合模式灵活多效,改造后的MIP+LTAG双提升管贫氧再生装置,对比以前的FDFCC-Ⅲ双提升管装置,汽油辛烷值明显提高,汽油中的烯烃含量稍有降低,芳烃含量明显提高,经进一步处理后符合国Ⅵ汽油标准要求;多产汽油方案时汽油收率也有明显增加趋势,柴油十六烷值降低明显,柴油质量变差,装置总体油浆系统较改造前油浆密度增加,LTAG油浆产率低,单独的LTAG反应器对应的分馏塔需要有补充油浆才能保证系统运行,保证油浆系统固含量及密度。  相似文献   

11.
洛阳石化1.4Mt/a催化裂化装置,原料为加氢蜡油中掺炼30%的减压渣油,由于渣油中硫、重金属和沥青质含量高,造成产品收率和产品质量波动,且设备腐蚀严重,对催化裂化装置平稳操作提出挑战。实施先进控制系统(APC)以后,装置关键被控变量的控制更为平稳,主要操作参数的标准偏差均降低20%以上,减轻了操作人员的工作强度。分馏单元平稳控制得到有效提高,反应-再生单元对分馏单元的冲击和影响平稳过渡,同时确保了稳定汽油和轻柴油的产品合格率。吸收-稳定单元控制优化更加合理,干气中C_3~+组分,液化气中C2-和C5+组分含量均得到有效控制,稳定汽油饱和蒸汽压合格率得到提高;解吸塔底再沸器热源优化,解吸塔底温度稳定性变好,减少1.0MPa蒸汽消耗1.2t/h。高价值产品汽油收率提高,轻油液收达到86.27%,提高2.43个百分点,装置综合能耗下降2.77kg标油/t。  相似文献   

12.
孙国臣 《中外能源》2009,14(11):91-95
燕山石化乙烯装置生产能力为71×104t/a,2005年装置能耗为684.9kg标油/t乙烯。近年来,为降低装置能耗,采取如下措施:①优化原料结构,提高乙烯收率,石脑油中对乙烯收率影响最大的链烷烃含量由2006年的69%提高到2009年的71%,裂解性能得到改善,加氢尾油(HVGO)中的芳烃指数(BMCI)由2007年的14降低到2009年的7;到2008年,以石脑油为代表的轻质原料的加工量已达62.8%,2009年5月乙烯收率已达32.13%。②优化蒸汽平衡,在所有裂解炉上安装空气预热器,改高压锅炉给水泵的运行方式为电泵运行、汽泵备用,降低低压蒸汽产量15t/h,解决了低压蒸汽过剩问题,消除了放空现象。③裂解炉烧焦时间由57h缩短了10h,降低了烧焦的消耗,急冷油塔釜温度平均提高10℃,减少中压蒸汽耗量15t/h。④加强设备检修和维护管理,在负荷不变的情况下,超高压蒸汽消耗平均下降了40t/h。上述措施实施后,乙烯装置2009年上半年的装置能耗为568kg标油/t乙烯,比2005年下降17.1%。  相似文献   

13.
中国石化洛阳分公司芳烃联合装置节能优化改造项目,主要是采用新型塔板技术,对芳烃联合装置的8个塔器和加热炉余热回收系统进行改造。塔器改造主要是对8台塔器的内件进行更换,将原有塔板一对一更换为新型复合孔微型高效塔板;加热炉改造主要是将歧化加热炉、二甲苯塔重沸炉和异构化加热炉等4台加热炉的空气预热器,由热管式空气预热器整体更换为扰流子管+搪瓷管的重型空气预热器,改造后的空气预热器为两级、四程列管式空气预热器。从装置综合能耗标定结果来看,实施节能改造后,加热炉热效率提高到91%以上,排烟温度降至118℃,各塔热利用率有所提高,再沸量均有下降。芳烃联合装置的综合能耗达到301.31kg标油/t产品,比改造前的352.19kg标油/t产品,降低约50kg标油/t产品,节能效果显著,达到了预期目标。目前,节能设备运行平稳,产品质量合格。  相似文献   

14.
洛阳石化执行汽油国ⅥA段生产标准,要求汽油烯烃含量按≤18%控制,因此要求对两套催化裂化装置、S-Zorb装置进行攻关优化,降低汽油中烯烃含量,缓解罐区汽油烯烃含量超标。2018年8~10月,两套催化装置进行生产优化,通过调整进料性质、降低反应温度、提高催化剂活性、投用终止剂等措施,S-Zorb精制汽油出装置烯烃含量从24.6%降低至19.6%,汽油降烯烃取得一定效果。在优化过程中,发现装置运行中存在关键参数调整幅度受限、重质油掺炼无法保证大剂/油比、催化剂高活性与装置剂耗相矛盾、S-Zorb装置精制汽油低烯烃含量与辛烷值损失的取舍等问题,并提出未来降低汽油烯烃的优化方向,通过一催化装置MIP工艺改造、二催化副提升管恢复汽油进料流程、两套催化装置使用降烯烃专用催化剂、用直柴加氢石脑油调和汽油、烷基化装置的投产等措施,催化汽油的烯烃含量大幅降低,经济效益提高。  相似文献   

15.
惠州炼化500kt/a催化汽油加氢装置采用自主专利技术——全馏分催化汽油选择性加氢技术(CDOS-FRCN)。在生产国Ⅳ标准汽油时,一代技术(CDOS-FRCNⅠ)辛烷值损失几乎为零;但催化剂经再生后生产国Ⅴ汽油时,辛烷值损失最高达2.8~3.2个单位,严重影响装置的运行周期及经济效益。升级改造后的二代技术(CDOS-FRCNⅡ)工艺运行结果表明:在催化汽油硫含量为230~310mg/kg、新鲜进料为50t/h的情况下,生产硫含量≤7.5mg/kg的国Ⅴ汽油时,辛烷值损失在1.7~2.5个单位左右。加氢精制汽油辛烷值提升了0.7~1.5个单位,每年降低汽油调和成本约7500万元。催化剂失活速率由2℃/月降为不大于1℃/月,装置运行周期可有效延长一年以上,满足三年换剂检修的运行目标。全装置C5以上液收可达99.5%,氢耗仅为0.19%,能耗为18.22kg标油/t原料。若进一步降低进料催化汽油中的硫含量,则总辛烷值损失及装置能耗可进一步降低。  相似文献   

16.
袁晓云  赵剑涛 《中外能源》2010,15(12):74-76
长庆石化公司140×104t/a两段提升管催化裂化装置由于催化原料重、残炭值高,致使装置加工量和轻质油收率下降,焦炭和干气产率上升,为此,在装置试用Z-18催化分子筛抗焦活化剂,试用时间为2010年4月9日~5月6日,加注总量为12t。试用后,原料残炭平均含量由5.79%降至5.57%,平均密度由0.916g/cm3降至0.910g/cm3;平衡催化剂筛分组成、物理特性、重金属含量以及活性基本保持不变,同时流化也正常;操作条件与试用前基本相同;催化加工量由4057t/d提高至4102t/d,干气烧焦及损失由15.24%降低至14.65%,总液收由78.17%提高至79.63%,油浆产率由6.64%降低至5.72%;轻柴油性质未发生明显变化;汽油烯烃含量稍有降低,芳烃含量略有增加,RON降低0.14,但MON增加0.33;液化气性质没有明显变化,但丙烯含量由34.08%降至33.28%。  相似文献   

17.
陈良 《中外能源》2011,16(Z1):48-51
应用Aspen Plus软件,对湛江东兴石化150×104t/a柴油加氢改质装置进行流程模拟,得到了与装置实际操作接近的理想模型,通过模型分析,为装置优化操作、节能降耗、寻找生产瓶颈提供依据。在实际生产中,应用模型对各塔关键操作变量进行优化,在满足产品质量指标的前提下,优化汽提蒸汽量和稳定塔底温度,将硫化氢汽提塔汽提蒸汽量由2.3t/h降至1.8t/h,能够保证脱气效果;将产品分馏塔底汽提蒸汽由4.0t/h降至2.5t/h,柴油闪点温度和石脑油干点温度仍然合格,两项措施共计节约蒸汽2.0t/h,降低能耗(以每天加工原料4000t计算)0.912kg标油/t。将稳定塔底温度控制在175~180℃,吸收稳定系统运行平稳率得到改善,基本杜绝了稳定塔回流罐顶气体经常放火炬线现象,液化气收率由0.3%提高到0.44%。柴油加氢装置实施流程模拟优化操作后,全年实现创效825.1万元。  相似文献   

18.
郭诗锋 《中外能源》2010,15(8):73-77
上海高桥分公司3000kt/a柴油加氢精制装置采用抚顺石油化工科学研究院开发的新一代FHDS-6加氢精制催化剂,其具有加氢脱硫活性、选择性好、机械强度高、耗氢低等特点。装置在处理量320t/h、压力6.0MPa情况下投入生产运行,运行稳定后各项技术指标均达到生产要求。装置首月有效作业天数为12.9d,处理量为95321t,平均炼油量为307.9t/h,消耗氢气1445t,装置负荷率为86.24%;生产精制柴油87847t,柴油收率为92.16%,汽、柴油的总收率为98.30%;生产能耗为17.12kg标油/t。装置存在计量仪表超量程、设计流程不合理和控制方案不合理等问题,建议对计量仪表进行更换并优化流程。在装置正常运行5个月后进行标定:在设计处理量为357t/h生产欧Ⅲ标准柴油时,反应温度为334℃,冷高分压力为6.385MPa(表),氢油比为390(体积比),精制柴油硫含量为196μg/g,氮含量为35.4μg/g,脱硫率为98%,脱氮率为87%,能耗为12.81kg标油/t,低于设计能耗13.99kg标油/t;生产欧Ⅳ柴油时,反应温度为346℃,冷高分压力为6.529MPa(表),氢油比为434(体积比),精制柴油硫含量为38μg/g,脱硫率为99.6%。  相似文献   

19.
赵剑涛 《中外能源》2010,15(5):77-80
为了提高反应剂油比,增强重油裂解能力,提高装置处理量,长庆石化分公司决定对原1.4Mt/a重油催化裂化装置提升管反应器及待生循环线路进行改造。此次改造的核心技术是为实现“低温接触、大剂油比”而采用的高效催化技术,该技术把部分待生催化剂返回至提升管底部,与再生催化剂混合,从而降低与原料接触前的混合催化剂的温度,大幅度提高反应剂油比。该技术在提升管底部设置催化剂混合器,使催化剂在与原料油接触之前形成理想的环状流。通过此次改造,提高了反应剂油比,增强了重油裂解能力,提高了装置处理量,产品分布明显改善。装置加工量由改造前的125t/h提高到170t/h;轻油收率明显提高,由改造前的60%左右提高到65%左右。尤其是汽油收率.由39%提高至45%;同时干气、焦炭及损失明显减少,由19%左右下降至14%左右;从产品质量来看。汽油烯烃含量由40%下降至35%左右,辛烷值下降约2个单位,对柴油、液化气质量基本没有影响。  相似文献   

20.
中国石化高桥分公司4号柴油加氢精制装置设计规模3.0Mt/a,反应部分采用炉前部分混氢热高分方案,分馏部分采用硫化氢汽提塔加分馏塔出柴油和石脑油方案,设计原料油为直馏柴油(占74.74%)、焦化汽油(占8.33%)和焦化柴油(占16.93%),设计能耗为13.99kg标油/t。通过对装置满负荷标定分析数据进行能耗分析和研究,发现电耗、3.5MPa蒸汽和燃料气在装置总能耗中占比较高,分别为20%~23%,66%~67%和63%~66%。通过将原料中直馏柴油和催化柴油由冷进料切换为热进料,增上8.0MPa氢气管网,新氢增压机应用可调余隙调节系统,反应进料泵和贫胺液升压泵叶轮切割改造,在原料油升压泵、热低分气空冷器、分馏塔顶空冷器和产品柴油空冷器增上变频器,对分馏系统进行优化调整等措施,使装置能耗从2008年标定的12.81kg标油/t降至2015年的9.61kg标油/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号