首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以配体3,5-二-(4-吡啶基)-1,2,4-三唑与CuX形成催化剂,分别以α-溴代异丁酸乙酯和氯化苄为引发剂,环己酮为溶剂,进行了甲基丙烯酸甲酯(MMA)的原子转移自由基聚合(ATRP),同时考察了配比、溶剂量以及温度对聚合速率、聚合物分子量及分子量分布的影响.80℃下的聚合反应速度高于70℃;以环己酮为溶剂,单体与溶剂之比为1∶1.5时可得到较低分子量分布的聚合物.实验结果表明以吡啶基三唑为配合物催化甲基丙烯酸甲酯的聚合过程中,转化率和分子量随时间的增加而增大,聚合反应符合一级动力学规律,所得聚合物分子量分布较窄(1.21~1.46),结合端基分析和扩链反应结果,证明该聚合反应符合"活性"/可控自由基聚合.  相似文献   

2.
悬浮聚合法制取不同分子量级别的聚甲基丙烯酸甲酯   总被引:2,自引:0,他引:2  
祝爱兰  钟宏 《应用化工》2001,30(5):21-23
采用粉状MgCO3 作为分散剂 ,悬浮聚合制取了分子量从 2 4× 10 4 ~ 2 5 4× 10 4 的聚甲基丙烯酸甲酯。考察了温度、引发剂种类和浓度、分子量调节剂、转化率对聚合物分子量的影响规律 ,用粘度法测量了聚合物聚甲基丙烯酸甲酯 (PMMA)的分子量。结果表明 :温度的升高、引发剂浓度的增大、分子量调节剂的加入都会导致分子量的减小 ,随着转化率的提高 ,聚合物的分子量增大。在同等条件下 ,引发剂过氧化苯甲酰 (BPO)聚合所得的分子量较偶氮二异丁腈 (AIBN)高。通过实验 ,得到了满足作者需求的分子量 (96× 10 4 ~ 10 0× 10 4 )的聚合物的聚合条件为 :分散剂MgCO3 用量 1% ,单体∶水相 =1∶2 5 (质量比 ) ,引发剂BPO浓度 0 5 % ,反应温度 70℃ ,反应时间 3h。  相似文献   

3.
PS-PMMA-PBMA三嵌段聚合物的ATRP合成及表征   总被引:1,自引:0,他引:1  
以氯化亚铜(CuCl)/2,2’-联吡啶(bpy)为催化体系,苄基氯为引发剂,采用本体原子转移自由基聚合(ATRP)方法,引发苯乙烯(St)聚合,合成出大分子引发剂聚苯乙烯(PS-Cl)。用此大分子引发剂在溶液体系下引发第二单体甲基丙烯酸甲酯(MMA)聚合,合成出PS-PMMA-Cl二嵌段聚合物。再以此二嵌段聚合物为大分子引发剂引发甲基丙烯酸丁酯(BMA)聚合,合成出三嵌段聚合物PS-PMMA-PBMA。运用凝胶色谱、红外光谱、核磁共振氢谱及差示扫描量热技术等对三嵌段聚合物进行表征。  相似文献   

4.
将姜黄素与2-溴异丁酰溴(EBi B-Br)通过酰基化反应引入溴原子制备含溴姜黄素衍生物(Br-Curcumin-Br),然后再以Br-Curcumin-Br为引发剂、Cu Br/Bpy(2,2’-联吡啶)为催化剂引发甲基丙烯酸甲酯(MMA)进行原子转移自由基聚合。考察了此聚合反应过程中MMA的转化率以及聚合物分子量随时间的关系,分子量及分子量分布随转化率的关系。研究结果表明:聚合物转化率和分子量都随时间增加呈线性增加,分子量随MMA转化率增加也呈线性增加,而且不同聚合物的分子量分布比较窄(PDI<2)。  相似文献   

5.
以乙醇为溶剂,溴化亚铜(CuBr)为催化剂,溴乙酸乙酯为引发剂,1,10菲罗啉和N,N,N',N',N'-五甲基二乙烯基三胺(PMDETA)分别为配体的催化体系,进行了甲基丙烯酸甲酯的原子转移自由基沉淀聚合,通过GPC和称重量法对聚合物进行表征。结果表明,两种催化体系下MMA的转化速率较快,甲基丙烯酸甲酯的原子转移自由基沉淀聚合得到了较好的实现,得到了分子量分布较窄的聚合物。  相似文献   

6.
采用自由基聚合法,使用过硫酸钾作为引发剂,以丙烯酰胺(AM)、八甲基四硅环氧烷(D4)为反应单体,制备一种施胶性能优异的有机硅-阴离子聚丙烯酰胺胺聚合物造纸施胶剂,考察了反应温度、引发剂用量、单体浓度等因素对分子量的影响,对其工艺条件进行探讨,得到较好的聚合条件,反应时间为3 h,单体浓度5%,反应温度为60℃,引发剂量为0.3%。在此条件下,制备的有机硅-阴离子聚丙烯酰胺聚合物疏水性好、增强性强,分子量高达2.09×106。通过红外光谱(FTIR)对结构进行表征。  相似文献   

7.
采用自由基聚合法,使用过硫酸钾作为引发剂,以丙烯酰胺(AM)、八甲基四硅环氧烷(D4)为反应单体,制备一种施胶性能优异的有机硅-阴离子聚丙烯酰胺胺聚合物造纸施胶剂,考察了反应温度、引发剂用量、单体浓度等因素对分子量的影响,对其工艺条件进行探讨,得到较好的聚合条件,反应时间为3 h,单体浓度5%,反应温度为60℃,引发剂量为0.3%。在此条件下,制备的有机硅-阴离子聚丙烯酰胺聚合物疏水性好、增强性强,分子量高达2.09×10~6。通过红外光谱(FTIR)对结构进行表征。  相似文献   

8.
以甲基丙烯酸甲酯(MMA)为单体,过氧化二苯甲酰(BPO)为引发剂进行本体聚合制备聚甲基丙烯酸甲酯(PMMA)。探讨了引发剂种类、引发剂用量、预聚合温度、后聚合温度等对本体聚合的影响。结果表明,PMMA的最佳合成条件为:引发剂为BPO,用量为0.15-0.2%,预聚合温度为90℃,后聚合温度为40℃时所得的产品质量最优。  相似文献   

9.
以二硫代苯甲酸异丁腈酯为RAFT试剂,偶氛二异丁腈为引发剂,制备不同嵌段长度的甲基丙烯酸甲酯-苯乙烯嵌段聚合物.嵌段聚合物数均分子量的实验值与理论值接近,但由于RAFT聚合过程中,聚甲基丙烯酸甲酯死聚物的生成,使嵌段聚合物的分子量分布指数较宽.  相似文献   

10.
以甲基丙烯酸甲酯(MMA)为单体,Fe Cl3·6H2O为催化剂,六次甲基四胺(HTMA)为配体,维生素C为还原剂,无水乙醇为溶剂,在2-羟基-2-甲基-1-苯基丙酮(1173)和四氯化碳(CCl4)双引发剂共同存在下,利用光聚合的方法,研究了单因素条件下MMA光聚合收率的工艺参数,并进行了优化。目标产物经红外分析表明,得到的聚合物是聚甲基丙烯酸甲酯(PMMA)。  相似文献   

11.
Summary Poly(n-propyl methacrylate) is known to be immiscible with poly(methyl methacrylate) (PMMA). However, we have found that poly(methoxymethyl methacrylate) is miscible with PMMA, indicating the importance of ether oxygen atoms in achieving miscibility. On the other hand, poly(methylthiomethyl methacrylate) is immiscible with PMMA.  相似文献   

12.
Summary The miscibility behaviour of poly(methoxymethyl methacrylate) (PMOMA) and poly(methylthiomethyl methacrylate) (PMTMA) with poly(vinylidene fluoride) (PVDF) was examined by differential scanning calorimetry. PMOMA/PVDF blend system was judged to be miscible on the bases of the presence of a single, composition-dependent glass transition for the blend and a pronounced melting point depression of the PVDF component. Furthermore, lower critical solution temperature (LCST) behaviour was observed for all PMOMA/PVDF blends. PMTMA/PVDF blends were found to be immiscible. Based on the melting point depression of PVDF in PMOMA/PVDF blends, the interaction parameter B was found to be -14.5 J/cm3.  相似文献   

13.
Summary The thermal stability of poly(styrene-b-methyl methacrylate) diblock copolymers (= P(S-b-MMA)) and poly(styrene-b-ethylene-co-1-butene-b-methyl methacrylate) triblock copolymers (=P(S-b-EB-b-MMA)) was investigated. Well-defined high molecular weight block copolymers with narrow molecular weight distribution (MWD) were molded at different temperatures in vacuum and the alteration of the MWD was sensitively monitored by gel permeation chromatography (GPC). Up to 240°C P(S-b-MMA) shows almost no broadening of the MWD. At higher temperatures low molecular weight polystyrene-rich portions are formed. The number average molecular weight (Mn) is strongly reduced. P(S-b-EB-b-MMA) triblock copolymers show broadening of the MWD to higher and lower molecular weights at elevated temperatures, probably caused by chain scission and linking reactions of the EB block. Mn remains approximately constant. Up to 240°C the broadening of the MWD is not very pronounced. In comparison to unhydrogenated P(S-b-B-b-MMA) triblock copolymers, the thermal stability of P(S-b-EB-b-MMA) is greatly enhanced.  相似文献   

14.
Uniform and symmetric membranes were formed from poly(methyl methacrylate) (PMMA) by making use of the stereocomplex phenomenon which characteristically occurs in the solution of a mixture of isotactic PMMA and syndiotactic PMMA. The water permeability of the membrane was very high compared to a commercially available cellulosic membrane, whereas their NaCl permeabilities were the same. The permeabilities of the membranes are explained by a simple capillary model. By varying the tacticity of the polymer it was found that the finest membrane structure is formed at the isotactic polymer ratio of ca. 30%. This shows the close relationship between complex formation and membrane permeability.  相似文献   

15.
Poly(allyl methacrylate)-co-(hydroxyethyl methacrylate) has been evaluated as a high-sensitivity, high-resolution, high temperature-resistant negative electron resist. The effects of molecular weight and polydispersity of the copolymer on its lithographic performance as an E-beam resist were studied. The sensitivity of the copolymer is nearly constant in the weight-average-molecular-weight range of 50,000 to 75,000, and it gradually decreases with a decrease in molecular weight. As expected for a negative resist, the resist contrast increases as the polydispersity is decreased. The sensitivity curve shape of the polymer was independent of the prebake temperature, which varied from 70 to 110°C, and of the various developers used. The exposed coating requires vacuum curing for image optimization. Resolution of 0.5 μm line/space pairs was obtained from a 0.6 μm thick resist by exposing the resist to 10 keV electrons with either a raster-scan-type or vector-scan-type electron-beam exposure machine. After postbaking at 170°C, the resist had good resistance to both chemical etching and dry etching. The plasma-etch resistance was about twice that of PMMA.  相似文献   

16.
The miscibility of poly(methoxymethyl methacrylate) (PMOMA) and poly(methylthiomethyl methacrylate) (PMTMA) with poly(styrene-co-acrylonitrile) (SAN) and poly(p-methylstyrene-co-acrylonitrile) (pMSAN) was studied by differential scanning calorimetry. PMOMA is miscible with SAN having an acrylonitrile (AN) content around 30 wt %. However, PMOMA is immiscible with any of the pMSAN having AN contents between 9 and 36 wt % and with pMSAN having AN contents between 19 and 34 wt %. The miscibility of the blends enables the evaluation of various segmental interaction parameters.  相似文献   

17.
Summary Poly(N-vinyl-2-pyrrolidone) is miscible with poly(3-chloropropyl methacrylate), poly(2-bromoethyl methacrylate) and poly(2-iodoethyl methacrylate) as shown by the optical clarity and the glass transition behaviour of the blends. The miscible blends degrade before phase separation could be induced by heating. The three Tg-composition curves can be fitted by the Gordon-Taylor equation. The implication of the Gordon-Taylor k parameters of the blends is discussed.  相似文献   

18.
The limit of linear viscoelasticity is determined for poly(methyl methacrylate) (PMMA) and poly(ethyl methacrylate) (PEMA) in uniaxial tension creep over the temperature range of 20° to Tg ?10°C. The time span covered is from 10 to 1000 sec. The linear limit is defined as the point at which the creep compliance deviates by more than 1% from its mean value in the linear viscoelastic range. For both materials, the stress limit of linear viscoelasticity falls to a minimum or plateau level at a temperature below Tg. It is suggested that the β-mechanism plays an important role in the existence of this minimum.  相似文献   

19.
The absorption kinetics and equlibria of methyl methacrylate monomer into poly(methyl methacrylate) were studied over a range of penetrant activities. The interval sorption kinetics at elevated activities were determined, compared, and contrasted with the integral sorption experiments in previously unpenetrated film samples. The sorption kinetics in previously unpenetrated films were predominantly case II or relaxation controlled at high activities. A Fickian contribution to the overall kinetics was apparent at lower activities. In contrast, interval sorption, at elevated activities in previously equilibrated and plasticized samples, followed Fickian kinetics rather closely, whereas resorption, over an activity range which involved a traversal of the effective Tg, was characterized by more complicated kinetics involving a super case II mechanism at long times. These composite results reinforce the notion that the kinetics describing penetration of a single penetrant into a single polymer are extremely sensitive to the boundary condition imposed upon the polymeric sorbent.  相似文献   

20.
A poly(perfluoroalkylethyl methacrylate) and a series of poly(n-alkyl methacrylate)s such as poly(methyl methacrylate), poly(ethyl methacrylate), and poly(n-butyl methacrylate) were prepared and used to investigate the surface properties of polymer mixtures containing a fluorinated homopolymer and a nonfluorinated homopolymer and the effect of the side-chain length of poly(n-alkyl methacrylate) on the surface free energy for the polymer mixtures. Contact angles were measured for the surfaces of polymer mixtures by varying the concentration of poly(perfluoroalkylethyl methacrylate). From the contact angle data, it can be inferred that most of the poly(perfluoroalkylethyl methacrylate) added to poly(n-alkyl methacrylate)s is located in the outermost layer of polymer-mixture surface. Surface free energies for the outermost surfaces of polymer mixtures were calculated from the contact angle data using Owen and Wendt's equation. The decrease in the surface free energy for the polymer mixture with the poly(perfluoroalkylethyl methacrylate) addition is more pronounced as the side-chain length of poly(n-alkyl methacrylate) decreases. Due to the steric effect of the side chain of poly(n-alkyl methacrylate), the arrangement of the perfluoroalkylethyl group of poly(perfluoroalkylethyl methacrylate) to the air side is considerably hindered. The ESCA analysis of atomic compositions of the surface for the polymer mixture verified that poly(perfluoroalkylethyl methacrylate) is preferentially arranged and concentrates at the polymer mixture–air interface. The results of functional group compositions obtained by ESCA showed that the functional group composition of  CF3 for the outermost layer has a more important effect on the surface free energy than that of  CF2 and confirmed the hindrance of the arrangement of perfluoroalkylethyl group to the air side by the side chain of poly(n-alkyl methacrylate). © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号