首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The minimum quantity of lubrication (MQL) technique is becoming increasingly more popular due to the safety of environment.Moreover,MQL technique not only leads to economical benefits by way of saving ...  相似文献   

2.
The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. To sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel–work interface. The present work aims to develop a numerical model to replicate the mist formation in minimum quantity lubrication (MQL) grinding using a fluent-based computational fluid dynamics (CFD) flow solver. The MQL parameters considered for this study are air pressure and the mass flow rate. Simulation of the atomization under turbulent conditions was done in a discrete phase model (DPM) owing to the fact that oil mass flow rates are very low and oil acts as a discrete medium in air. Jet velocity and droplet diameters were also obtained under different input conditions to find the optimum value of air pressure and mass flow rate of oil to achieve the desired results (lower cutting force and surface roughness) in MQL grinding of superalloy (Inconel 751). It is seen that medium size (around 16.3 µm) of droplet plays a significant role in improved performance by the way of reduction in cutting force and surface roughness.  相似文献   

3.
Effective lubrication and cooling is necessary to ensure grinding temperature levels not to become excessive during grinding process. Conventional grinding fluid has negative influences on the working environment in terms of the health of the machine operator. Furthermore, the using of grinding fluid is seen to increase production cost due to fluid purchase and disposal. One attractive alternative is the minimum quantity lubrication (MQL) grinding. In this study, oil–water was applied in the MQL grinding and the grinding results were compared with those of wet, dry, and pure oil MQL grinding. It is found that MQL grinding in comparison to dry grinding significantly enhances grinding performance in terms of improving the quality of the ground workpiece and reducing grinding temperature and forces. Compared with pure oil MQL grinding, the grinding temperature and the thickness of the affected layer for oil–water MQL grinding are lower. However, the tangential force and surface roughness for oil–water MQL grinding are higher than that for pure oil MQL grinding. This indicates that the former has a better cooling condition than the latter, but the lubrication capacity is contrary.  相似文献   

4.
Abstract

The proposed work deals with the investigation of magnetorheological based minimum quantity lubrication of graphene oxide (GO) based jojoba oil as bio-lubricant on machinability and tool wear mechanism of turning Monel K500 alloy. Experiments were carried out for dry, flooded, minimum quantity lubrication (MQL) and magnetorheological (MR–MQL) conditions using medium duty lathe. The process parameters include the cutting speed 95, 110, 125?m/min, feed rate 0.050, 0.075, 0.1?mm/rev and depth of cut 0.25, 0.50, 0.75?mm for the output responses such as surface roughness, cutting temperature and tool flank wear. The results indicated that GO-based bio-lubricant MR–MQL reduced coefficient of friction (COF) of 0.051 and wetting angle of 6°, as well as improved machining performance such as cutting temperature of 145?°C, the surface roughness of 0.614?µm, flank wear of 0.18?mm with enhanced lubrication regime under extreme wear conditions.  相似文献   

5.
To reduce the usage of grinding fluid, nanofluid has recently been applied to grinding process with minimum quantity lubrication (MQL) technique. In this study, surface grinding of hardened AISI 52100 steel under different spraying parameters was carried out. Grinding performance was investigated and compared in terms of grinding forces, surface roughness, and grinding temperature. Experimental results show that the MQL nozzle spraying direction has important effects on the application of the nanofluid mist, and then on the lubrication and cooling of the grinding zone. It is found that an optimal grinding performance can be obtained when the nozzle is positioned angularly toward the grinding wheel. Furthermore, it is shown that air pressure and spraying distance are also critical in order to enhance the nanofluid mist to be penetrated into the grinding zone. Grinding forces, surface roughness, and grinding temperature are decreased with the increase of air pressure, and grinding performance in shorter spraying distance is better than that in longer spraying distance. The influence mechanism of the spraying parameters on the grinding performance was discussed.  相似文献   

6.
In grinding process, the abrasives plunge and slide against the workpiece during material removal with high specific energy consumption and high grinding zone temperature. To improve process efficiency, lubrication becomes an important requirement of the grinding fluids, along with chip removal and cooling the grinding zone. Grinding fluids have negative influences on the working environment and machining cost in terms of the health of the machine operator, pollution, the possibility of explosion (for oil), filtering, and waste disposal. The use of minimum quantity of lubrication (MQL) with an extremely low consumption of lubricant has been reported as a technologically and environmentally feasible alternative to flood cooling. This paper deals with an investigation of the grindability of hardened stainless steel (UNS S34700) and aluminum alloy AA6061 using dry, MQL, and conventional fluid techniques. One type of SiC and five types of Al2O3 wheels (corundum) as well as vegetable and synthetic ester MQL oils have been tested. The influences of wheel and coolant–lubricant types have been studied on the basis of the grinding forces, surface topography, and surface temperature. Synthetic ester MQL oil was found to give better grinding performance than the vegetable MQL oils. It was argued that the improved performance of the ester oil is caused by the formation of tribo-films on the abrasives and the workpiece, which enhances lubrication by inhibiting metal–abrasive interaction. Also, the grindability of the machined specimens was found to increase substantially by using the MQL grinding process with soft and coarse wheels. In MQL grinding of AA6061 alloy, the use of vegetable oil resulted in the lowest surface roughness, whereas using synthetic ester additives lead to highest surface roughness because of higher chip loading on the grinding wheel and consequently more redeposited material on the workpiece surface.  相似文献   

7.
In this study, the lubrication and cooling properties of eco-friendly graphite nanofluids in MQL grinding were investigated. Grinding forces, subsurface temperature of workpiece, surface roughness, micro-hardness and metallographic observations of ground surfaces were employed to evaluate the performance of synthesized nanofluids as lubricant under different grinding parameters. The results were also compared with grinding in dry, pure MQL and flood cooling conditions. The results showed that the tangential forces and force ratios in grinding using graphite nanofluid MQL are lower than that of other lubricating methods especially at extreme cutting parameters. Also, application of graphite nanofluid MQL reduced the grinding temperature at high velocities of workpiece. These reductions could be attributed to the formation of a tribofilm on the ground surface by the present of graphite nanoparticles in the wheel-workpiece interface. Additionally, the presence of this tribofilm in the contact area generated a smooth surface even at high depth of cut and velocity of workpiece. Furthermore, the micro-hardness of ground surfaces increased in graphite nanofluid MQL grinding because of infiltration of graphite nanoparticles in the grinding surface and the plastic deformation of subsurface of workpiece.  相似文献   

8.
Titanium and its alloys are attractive materials due to their unique high strength–weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. The major application of titanium has been in the aerospace industry. On the other hand, titanium and its alloys are notorious for their poor thermal properties and are classified as difficult-to-machine materials. The problems that arise during grinding of titanium alloys are attributed to the high specific energy and high grinding zone temperature. Significant progress has been made in dry and semidry machining recently, and minimal quantity lubrication (MQL) machining in particular has been accepted as a successful semidry application because of its environmentally friendly characteristics. A number of studies have shown that MQL machining can show satisfactory performance in practical machining operations. However, there has been few investigation of MQL grinding of special alloys like titanium alloys and the cutting fluids to be used in MQL grinding of these alloys. In this study, vegetable and synthetic esters oil are compared on the basis of the surface quality properties that would be suitable for MQL applications. The cutting performance of fluids is also evaluated using conventional wet (fluid) grinding of Ti–6Al–4V. As a result, synthetic ester oil is found to be optimal cutting fluids for MQL grinding of Ti–6Al–4V.  相似文献   

9.
Abstract

Titanium, a difficult-to-cut material, consumes higher time and cost in removing material by machining to produce parts. Machining of Ti alloys has got serious attention owing to its reactive nature with tool materials at elevated temperature that aggravates tool wear. Reportedly, effective and efficient cooling and lubrication at the tool–work interface can ameliorate the machinability of Ti-alloys. In this perspective, this article interrogates the underlying mechanism of critical responses such as surface roughness, temperature, tool life and machining cost under dry, minimum quantity lubrication (MQL) and cryogenic liquid nitrogen (LN2) modes. The effect of cutting speeds and feed rates on such responses have been considered as a function of cooling strategy to standardize the cooling technique as the best alternative for machining. Cryogenic cooling seems to be preponderant regarding machining cost, temperature, surface roughness and tool life in hard turning of a–b titanium alloy. The feasibility of cryogenic cooling was investigated using the iso-response technique in comparison with dry and MQL-assisted hard turning. Experimental results revealed longer tool life and lower machining cost under cryogenic condition followed by MQL and dry machining. Moreover, cryogenic LN2 has been identified as an appropriate alternative to reduce the temperature and surface roughness. On contrary, dry turning evoked a high-temperature and rapid tool wear. In a nutshell, cryogenic assisted hard turning has acceded as a sustainable strategy from an environmental and economic perspective.  相似文献   

10.
Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.  相似文献   

11.
This study develops the analytical understanding of mechanical and environmental effects of minimum quantity lubrication (MQL) in machining and profiles the MQL performance as functions of machining and fluid application parameters. Physics-based predictive models are formulated to quantitatively describe the resulting contact stress and temperature distributions under completely dry, MQL (under boundary lubrication), and flood cooling conditions in cylindrical turning. On that basis, the air quality effects in terms of cutting fluid aerosol emission rate and droplet size distribution have been derived through the modeling of evaporation, runaway aerosol atomization, and dissipation processes. Additionally, the abrasion, adhesion, and diffusion wear mechanisms under time-evolving cutter geometry have been quantitatively evaluated for the development of a tool wear and tool life relationship with the fluid application condition. Experimental measurements of force, temperature, aerosol concentration, and tool flank wear rate in dry, MQL, and fluid cooling cases has also been pursued to calibrate and validate the predictive models. The MQL performance profile is assessed through the sensitive analysis of tool utilization, power consumption, and air quality with respect to MQL application parameters; and it serves as a basis to support the overall optimization of machining process by incorporating both mechanical and environmental considerations.  相似文献   

12.
This research investigated the wheel wear and tribological characteristics in wet, dry, and minimum quantity lubrication (MQL) grinding of cast iron. Water-based Al2O3 and diamond nanofluids were applied in the MQL grinding process and the grinding results were compared with those of pure water. During the nanofluid MQL grinding, a dense and hard slurry layer was formed on the wheel surface and could benefit the grinding performance. Experimental results showed that G-ratio, defined as the volume of material removed per unit volume of grinding wheel wear, could be improved with high-concentration nanofluids. Nanofluids showed the benefits of reducing grinding forces, improving surface roughness, and preventing workpiece burning. Compared to dry grinding, MQL grinding could significantly reduce the grinding temperature.  相似文献   

13.
Abstract

Many studies were performed about the influence of minimum quantity lubrication (MQL) technique on cutting performance in the literature, but there is no paper examining the effect of different MQL flow rates and cutting parameters on machinability of AISI 4140 material as a whole. In this study, the effects of different MQL flow rates and cutting parameters on surface roughness, main cutting force and cutting tool flank wear (VB), with great importance among the machinability criteria, and forming as a result of the machining of AISI 4140, were revealed. At the end of the experiments, it was determined that rise of flow rate affected main cutting forces positively to a certain extent; yet, it exhibited no significant effect on surface roughness, but reduced VB. Also, it was observed that both main cutting force and surface roughness increased with the increase of feed, while generally decreased with the increase of cutting speed. It was seen that flank wear was positively affected by the increase in flow rate; and this decreased with the increase in flow rate. R2 values obtained as 99.8% and 99.9% for main cutting forces and surface roughness values modeled statistically with the help of quadratic equations, respectively.  相似文献   

14.
Manufacturers need to continuously improve productivity and reduce the most disadvantages. In the current work, an experimental study has been carried out in order to evaluate the influence of different cutting parameters on the various machining factors such as surface roughness, cutting force, cutting power, metal removal rate, and tool wear during turning of X210Cr12 steel using a multilayer-coated tungsten carbide insert with various nose radii (r). Tests are designed according to Taguchi’s L18 (21 × 34) orthogonal array. ANOVA has been performed to determine the effect of the cutting conditions, and mathematical models have been developed through response surface methodology (RSM). The results indicate that the feed rate and the tool nose radius are the main affecting factors on surface roughness while both tangential force and cutting power are affected mainly by the depth of cut followed by the feed rate and the nose radius. Other special tests of long term have been established in order to study the wear evolution and consequently to determine the tool life. The results indicate also that minimum quantity lubrication (MQL) leads to an important improvement in terms of the cutting tool life by a gain of 23~40% compared to wet and dry machining. It has been found that the MQL is an interesting way to minimize lubrication cost and protect operator health and the environment while keeping better machining quality.  相似文献   

15.
When considering machinability parameters, the use of coolant is indispensable in metal cutting operations. However, stricter environmental regulations are making the use of an ample amount of conventional coolant impossible because of its negative impact on the environment. Consequently, the use of minimal quantities of lubricant (MQL) can be regarded as an alternative solution in which the functionality of cooling and lubrication can be achieved by a tiny amount of cutting oil. In this study, flood coolant (42 l min _1) was used compared to the MQL amount of 8.5 ml h_1 and the comparative effectiveness was investigated in terms of cutting force, tool wear, surface roughness, and chip shape. Unlike the catastrophic tool failure in flood cooling, the use of MQL resulted in the cutting edge remaining intact, in spite of a higher flank width. The findings of this study show that MQL may be considered to be an economical and environmentally compatible lubrication technique.  相似文献   

16.
Titanium machining poses a great challenge to cutting tools due to its severe negative influence on tool life primarily due to high temperature generated and strong adhesion in the cutting area. Thus, various coolant supply methods are widely used to improve the machining process. On account of this, tool life and cutting force are investigated based on dry cutting, flood cooling, and minimum quantity lubrication (MQL) techniques. The experimental results show that MQL machining can remarkably and reliably improve tool life, and reduce cutting force due to the better lubrication and cooling effect.  相似文献   

17.
Several health and environmental related issues caused by the application of traditional cutting fluids in machining can be solved by implementing eco-friendly technologies such as minimum quantity lubrication (MQL). Moreover, nanofluid MQL has been proposed to enhance the cooling/lubricating properties of pure MQL and displays significantly good results for machinability. However, the mechanism on compatibility of nanoparticles with cutting fluids has not been explored. In this study, nanoparticles with different hardness and vegetable oils with different viscosity were selected for nanofluids preparation. The end milling experiments were carried out on 7050 material by applying MQL with particularly prepared nanofluids. The cutting force and surface roughness were measured corresponding to the machining performance. The compatibility of hardness of nanoparticles with viscosity of base fluids has been evaluated, and the mechanism has been analyzed by new-designed tribology tests. Results show that canola oil-based diamond nanofluids MQL exhibit the lowest cutting force and natural77 oil-based diamond nanofluids perform the lowest surface roughness with reduction of 10.71 and 14.92%, respectively, compared to dry machining condition. The research is novel and contributes to the machining of such materials at the industry level.  相似文献   

18.
This paper presents a micro-grinding experiment on AISI 1020 steel and Ti-6Al-4V to study micro-grinding principle and the change rule of the force and surface with different grinding parameters. A novel micro shaft grinding tool is fabricated by cold sprayed with CBN grains, the manufacturing is carried out on a desktop micro machine developed by NEU. Influences caused by particle size on surface quality has been discussed, it has been tested that low surface roughness could be achieved on 3000 particle size of micro shaft grinding tool, the roughness of AISI 1020 steel accomplished in the experiment is about 0.086 μm. Measured micro-grinding force of Ti-6Al-4V decreases with the increasing spindle speed and the decreasing cutting depth. The surface roughness decreases with the increasing spindle speed and the decreasing feed rate. The minimum surface roughness is 325 nm with the spindle speed of 48000 r/min and the feed rate of 20 μm/s.  相似文献   

19.
Titanium machining poses a great challenge to cutting tools due to its severe negative influence on tool life primarily due to high temperature generated and strong adhesion in the cutting area. Thus, various coolant supply methods are widely used to improve the machining process. On account of this, tool life and cutting force are investigated based on dry cutting, flood cooling, and minimum quantity lubrication (MQL) techniques. The experimental results show that MQL machining can remarkably and reliably improve tool life, and reduce cutting force due to the better lubrication and cooling effect.  相似文献   

20.
Residual stress is one of the critical characteristics for assessing the surface integrity of machined components as it poses a strong bearing on the service quality, functionality, and life of the machined components. The machined-in residual stresses can be affected by cutting parameters, tool geometry, material properties, and lubrication conditions. A physics-based relationship between residual stresses and processing conditions could support process planning in achieving desirable part quality and functionality. This paper presents an analytical model that predicts the residual stresses in machining under minimum quantity lubrication (MQL) condition as functions of cutting parameters, tool geometry, material properties as well as MQL application parameters. Both the lubrication and cooling effects caused by MQL air–oil mixture contribute to changes in friction due to boundary lubrication as well as changes in the thermal stress due to heat loss. The cutting force and cutting temperature are coupled into a thermal–mechanical model which incorporates the kinematic hardening and strain compatibility to predict the resulting residual stress under lubricated conditions. The residual stress prediction model is verified for orthogonal tube facing of TC4 alloy. The predicted residual stresses captured the measured results well in terms of the trend and magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号