首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the operation of the sodium-cooled fast reactor, the leakage and fire accident of liquid sodium is common and it is frequent in sodium-related facilities. This study focuses on the combustion and suppression characteristics of sodium fire in a columnar flow. Liquid sodium (250 °C) is injected into a 7.9 m3 cylindrical chamber at a flow rate of about 1.0 m3/h to create a columnar sodium fire, and 18.4 kg class D extinguishing powder is sprayed after the liquid sodium injection. The temperature in the chamber space and sodium collection plate and the heat release rate from sodium fire are measured and analyzed. Based on the temperature data the sodium fire under suppression could be divided into four phases of dropping sharply, continuously remaining lower, rising and declining mildly, and depressing. The sodium fire in the space could be suppressed and cooled down if the extinguishing agent could spray in the early period of the liquid sodium injection. The extinguishing agent could suppress the combustion and spreading of liquid sodium dropping on the collection plate, limit the pool combustion area and postpone the commencement of sodium pool burning in spite of its later re-ignition happening. This study promises to evaluate the combustion and suppression characteristics of sodium fire in the sodium-related facilities.  相似文献   

2.
In the operation of the sodium-cooled fast reactor, the accident caused by the leakage and combustion of liquid sodium is common and frequent in sodium-related facilities. This paper is based on an experimental study of sodium fire in a columnar flow, which was carried out to focus on the burning characteristics by analyzing the temperature fields in the burner. The injection of 200 °C liquid sodium with the flux of 0.5 m3/h was poured into a 7.9 m3 volume stainless steel cylindrical burner to shape a sodium fire, and the data of temperature fields in the burner have been collected by dozens of thermocouples which are laid in the combustion space and sodium collection plate. These results show that the sodium fire in a columnar flow is composed of the foregoing centered columnar fire, the subsequent spray fire caused by atomization and the pool fire on the collection plate. The temperature close to the burning sodium flow maximally reaches up to 950 °C. The radial temperatures apart from the sodium flow are relatively low and generally about 200 °C, and maximally just 300 °C even when close to the sodium collection plate. The maximum temperature of the burning sodium dropping on the collection plate rises in the center of plate, about 528 °C. This study is helpful to evaluate the combustion characteristics, formation process and composing forms of the sodium fire in the sodium-related facilities.  相似文献   

3.
Sodium spray combustion was studied through experiments and analysis, in order to clarify the burning rate, pressure and temperature transients in a sodium spray fire. In the experiments, about 400 g sodium was sprayed in a closed vessel of 2 m3, containing nitrogen and 0–21 vol% oxygen. Pressure, temperature and oxygen concentration were measured during and after sodium injection. The experimental results revealed that the temperature in the spray outer region was higher than that of inner region and observed oxygen consumption was not more than 80% of that expected for complete combustion of sodium. To analyze the experiments, a computer program SOFIA-II was developed based on an analytical single droplet combustion model and a two-dimensional temperature and oxygen concentration distribution model in the vessel. The calculated pressure agreed with the experimental pressure on the whole and the peak pressure difference was within 10% error.  相似文献   

4.
The studies on sodium pool inflammation have been conducted in a 3161 vessel, and those on sodium pool fires in three facilities: 4, 22 and 400 m3. The influence of the following parameters has been studied: sodium temperature, combustion area, humidity in the atmosphere and oxygen concentration. The experimental results have been used to validate the FEUNA code. The experimental studies on sodium spray fires have been conducted in a 3.7 m3 vessel. The experimental results have been used to validate a sodium spray fire computer code: PULSAR.  相似文献   

5.
液态钠泄漏和燃烧是钠冷快堆在运行中一多发的常见事故。本文主要针对液态钠滴在不同初始温度(140~370℃)和氧浓度(4%~21%)条件下的氧化燃烧行为进行实验研究。实验通过1套钠滴燃烧装置和高速摄像机使钠滴的氧化燃烧行为可视化。实验结果表明:钠滴的初始温度和氧浓度越低,钠滴表面产生的柱状氧化物越长;在相同氧浓度条件下,钠滴初始温度越高,越易着火燃烧;钠滴初始温度在200℃以下时很难点燃,当有扰动破坏了表面的氧化层结构时,钠滴也会逐渐燃烧;钠滴初始温度在140~370℃的条件下,氧浓度≥12%时,钠滴能燃烧充分,最高温度基本可升至600~800℃;氧浓度12%时,燃烧并不充分,燃烧的最高温度均在600℃以下。这些结果对柱状流及雾状钠火的研究有重要的指导意义。  相似文献   

6.
A response surface model has been proposed to evaluate an aerosol release fraction during sodium pool fire in a liquid metal fast reactor (LMFR). Air containing aerosols are radiative and they influence the allocation of combustion heat from the flame to atmospheric gas or sodium pool. Hence, the aerosol release fraction needs to be quantified based on the behavior of the aerosols and physics of mass and heat transfer. However, the aerosol release fraction is one of user-specified parameters of computer codes for the sodium fire safety analysis of the LMFR. In the present study, a response surface model of the aerosol release fraction has been developed based on numerical experiments of aerosol dynamics. For developing the model, aerosol dynamic equation has been solved coupled with thermal-hydraulics and chemical reaction. The authors obtained good agreement of the aerosol release fraction between the numerical experiments and the past experiments. Therefore, the aerosol behavior model has been validated with regard to the pool combustion phenomena and is reasonably applicable to the numerical experiment. Three influential variables on the release fraction are identified as pool temperature, gas temperature and oxygen molar fraction in the air. The proposed response surface model is a quadratic expression of the influential variables and can be easily employed in the sodium fire analysis code.  相似文献   

7.
将雾状钠火中钠滴的燃烧分成预燃阶段和燃烧阶段,利用雾状钠火程序计算得到钠滴燃烧比率和时间的关系曲线,分别用幂函数、指数函数和线性函数对曲线进行拟合,拟合效果较好。拟合函数中包含钠滴下落时间和钠滴最大燃烧比率等参数,这些参数可通过钠滴下落燃烧试验或雾状钠火程序计算得到。通过推导得到了雾状钠火燃烧和单个钠滴燃烧的关系,钠滴燃烧比率的拟合函数被用来模拟雾状钠火燃烧的过程,包括用于计算已燃烧的钠质量、空气中未燃烧的钠质量、进入钠池的钠质量和雾状钠火的燃烧速率。当雾状钠火燃烧过程中钠泄漏流量恒定不变时,空气中未燃烧的钠质量和钠泄漏流量呈正比,雾状钠火的燃烧速率和钠泄漏流量呈正比。雾状钠火的燃烧速率和钠火造成的事故工艺间内的温度与压力变化直接相关。雾状钠火的燃烧速率被用来求解钠气溶胶的生成速率、钠燃烧火焰层和空气之间的传热、钠燃烧火焰层和墙壁之间的传热。总之,使用简单的函数模拟钠滴的燃烧比率曲线,将雾状钠火燃烧当成事故工艺间的热源和钠气溶胶源作为输入,便可模拟雾状钠火的整个燃烧过程,计算得到工艺间温度、压力和钠气溶胶浓度的变化。钠滴的燃烧比率曲线、雾状钠火的燃烧速率曲线还可与试验数据进行对比验证后作为雾状钠火模拟的输入,这种模拟方法可用于钠火事故安全分析中雾状钠火的模拟。  相似文献   

8.
Plasma-facing materials in future large tokamaks will suffer from ablation due to expected hard disruptions, which affects the reactor interior lining tiles and the divertor modules. Ablation and surface evaporation due to the intense heat flux from disruption is associated with ionization of the evolved particulates. Generated ions at such plasma conditions may allow for higher ionization states such that the plasma at the boundary can be composed of electrons, ions (first, second and third ionization) and excited atoms. The boundary layer is dense and tends to be weakly nonideal. The NC State University electrothermal plasma code ETFLOW used to simulate the high heat flux conditions in which the carbon liner tested for simulated heat fluxes for transient discharge period of 100 μs, with FWHM of ~50 μs, to provide a wide range for obtaining reasonable good fits for the scaling laws. Transient events with ~10 MJ/m2 energy deposition over short transient of 50–100 μs would produce heat fluxes of 100–200 GW/m2. The heat flux range in this simulation is up to 288 GW/m2 to explore the generation of carbon plasma up to the third ionization C+++. The generation of such heat fluxes in the electrothermal plasma source requires discharge currents of up to 250 kA over a 100 μs pulse length with ~50 μs FWHM. The number density of the third ionization is six orders of magnitude less than the first ionization at the lowest heat flux and two orders of magnitude less at the highest heat flux. Plasma temperature varies from 31,600 K (2.722 eV) to 47,500 K (4.092 eV) at the lowest and highest heat fluxes, respectively. The plasma temperature and number density indicate typical high-density weakly nonideal plasma. The evolution of such high-density plasma particles into the reactor vacuum chamber will spread into the vessel and nucleate on the other interior components. The lifetime of the PFCs will shorten if the number of hard disruptions at such extreme heat fluxes would be increasing, resulting in major deterioration of the armor tiles.  相似文献   

9.
A large capacity sodium-immersed self-cooled electromagnetic pump (LEMP) was developed for application to the main circulation pumps of FBR. This advanced LEMP is a submergible annular linear induction pump designed to be self-cooled by immersing into sodium and applying high temperature electrical insulation. Almost all the internal electrical losses were transferred to the surrounding sodium, which can be recovered as electricity by turbine generators. The LEMP having specifications of 160m3/min flow rate, 0.28 MPa head and more than 40% efficiency at the rating was designed, fabricated and tested in the sodium pump test facility. The test involves magnetic field measurement in the air and a variety of sodium tests during 2,550 h, which demonstrated good pump performance and flow controllability, and satisfied the design target. The boundary between flow stability and instability of the LEMP operation could be defined by peak position of the Q-H curve, which was specified by Rem×S (magnetic Reynolds' number times slip) of 1.4 to 1.5 at 335°C. Based on the test results, the applicability of the LEMP for the FBR was confirmed.  相似文献   

10.
Sodium pool fire code, SOFIRE II, written for the constant value of stoichiometric combustion ratio and heat of reaction is used to compute the buildup of pressure and temperature in a containment. In the SOFIRE II model, for the formation of a mixture of Na2O and Na2O2 in the sodium pool, the input stoichiometric combustion ratio and heat of formation values need to be varied to corresponding values admissible for the mixture. In the present work, the SOFIRE II one-cell model is revised and the present version SFIRE1C (Sodium FIRE 1 Cell model) accounts for the formation of Na2O in an early stage of the fire and shifts to the formation of Na2O2 at a later stage. Thus SFIRE1C computes in a more realistic manner the reaction products which are formed in the pool. The model for sodium oxide aerosol release is also modified in this version, by incorporating a more appropriate aerosol release rate equation. The calculated values using the SFIRE1C one-cell model are compared with sodium pool fire experimental results.  相似文献   

11.
In the operation of the sodium-cooled fast reactor, the accident caused by the leakage and combustion of liquid sodium is common and frequent. In this paper, the combustion and spatial temperature distribution characteristics at the different distances from the center of droplet and the different angles (0–30°) were studied by carrying out the experiments of the oxidation and combustion under initial temperatures (200–350°C) of sodium droplet, oxygen concentrations (12–21%) and ambient atmosphere temperatures (80°C and 180°C). The experiment results show that the ambient atmosphere temperature cannot change the three stages (surface oxidation, preignition, and combustion) of sodium droplet combustion but it will change the characteristics of every stage. When the temperature of sodium droplet excesses the characteristic temperature (600°C), the temperatures of all spatial measuring points begin to rise noticeably. The peak temperature of the sodium droplet that completely burned could roughly reach 580–1000°C. The distributions of the spatial maximum temperature in three angle directions are in conformity with exponential function as the distance increases. The study provides the technical support on the evaluation and analysis of various forms of sodium fire accidents.  相似文献   

12.
A response surface model of the luminous flame emissivity of sodium pool fire has been proposed for use in safety analysis computer codes of a liquid metal fast reactor. The liquid sodium burns in air resulting in not only heat generation but also release of sodium oxide aerosols of sub-micron diameters. Aerosols levitating in air are radiative and they influence the allocation of combustion heat from the flame to atmospheric gas or sodium pool. The emissivity of the flame needs to be quantified, as it is one of user-specified parameters of the computer codes for the sodium fire analysis. The response surface model of the flame emissivity is developed based on numerical experiments on the physics of mass and heat transfer and behavior of the aerosol. Thermal-hydraulic equations have been solved coupled with aerosol dynamics and chemical reaction. Three influential variables on the emissivity are identified as pool temperature, gas temperature and oxygen molar fraction in the air. It has been found that the emissivity is calculated reasonably as a function of the three variables. The proposed response surface model can be easily employed in the sodium fire analysis codes because it is a simple quadratic expression. For the safety evaluation of the sodium fire, combined use is recommended of the proposed model and the lumped-mass zone model code.  相似文献   

13.
Tungsten coating was deposited onto an actively water-cooled oxygen-free copper substrate by atmospheric plasma spraying technique. The properties of the microstructure, porosity, microhardness and oxidation of the active water cooling atmospheric plasma spraying tungsten coating were characterized and measured. High heat load and thermal response tests using an electron beam facility have been carried out on the tungsten coated mock-ups under the water cooling condition. The heat flux is changed from 3 to 10 MW/m2 under the condition that the water flow rate is 2.5, 2.0 and 1.5 m3/h, respectively. It is demonstrated that the mock-ups successfully withstood a heat flux of 15.5 MW/m2 at steady state.  相似文献   

14.
钠冷快增殖堆钠雾火分析计算   总被引:5,自引:0,他引:5  
在钠冷快增殖堆假想事故中 ,由于管道破裂 ,钠喷出到有氧的房间引起钠雾火 ,导致房间内温度及压力的上升。在NACOM单个液滴燃烧模型的基础上 ,考虑燃烧钠液滴的运动以及由于钠液滴与气体的热平衡关系 ,并忽略由于液滴间的相互作用影响 ,编制程序SPCOM。对钠雾火过程中涉及的液滴运动、液滴燃烧、喷雾燃烧以及质量热量传递问题进行了模拟。计算了钠雾火引起的房间的温度及压力瞬变 ,并与实验进行了比较 ,符合良好  相似文献   

15.
We describe a system to deliver a large flux of O atoms for the removal of hydrogenated carbon films from surfaces in remote areas of tokamaks with carbon divertors. The oxygen plasma is generated via electrode-less radiofrequency discharge in a discharge chamber connected to a remote chamber by a 2 m long complex-shaped glass tube 4 cm in diameter. The density of O atoms in the remote chamber was measured with a nickel catalytic probe and its variation with discharge power obtained. The density was close to the detection limit of the probe (around 1 × 1019 m?3) as long as the vacuum system was pumped with a rotary pump at a nominal pumping speed of 80 m3 h?1. The density increased well over 1020 m?3 when a Roots pump was added. The effective pumping speed at the current setup was up to 200 m3 h?1. At such conditions, the maximal O-atom density at 2 m from the source was up to 3 × 1020 m?3. The density depended on the pressure as well as the discharge power. The behavior of O-atom density far away from the source was explained by gas phase and surface phenomena. The effective pumping speed was found to be of crucial importance. The setup was used for removal of model hydrogenated carbon films. Experiments were performed at sample temperatures up to 600 K and etching rates up to 50 nm/s were obtained. We found that the experimental setup is suitable for removal of hydrogenated atoms on a large scale.  相似文献   

16.
钠冷快堆中池式钠火的计算分析   总被引:2,自引:0,他引:2  
文章论述了根据池式钠火的特点建立了理论模型 ,编制了SPOOL程序。该程序模拟钠燃烧过程中钠和氧气的化学反应 ,钠燃烧热在各种介质中不同方式的传递 ,钠气溶胶的产生、沉积 ,以及在各种通风条件下多种介质的质量和能量交换等瞬态过程 ,描述了钠燃烧过程中各种特征参数随时间的变化。其主要的计算参数包括房间内气体的压力和温度、房间建筑结构的温度、钠气溶胶质量浓度等等。用俄罗斯别洛雅尔斯克核电站实验和法国卡桑德拉 3号实验的数据 ,对SPOOL程序进行验证的结果表明 ,该程序的计算结果可信。该程序为国内钠冷快堆中池式钠火事故的安全分析提供了分析方法  相似文献   

17.
According to IAEA regulation, type B packages are designed to withstand a fire test following the mechanical tests, simulating accident conditions during transport. The wood of the shock absorber located near the damage zones produced by these tests may ignite and the conditions of air accessibility inside the absorber could mean that wood smouldering persists during the cooling period. IRSN has conducted an experimental study in which a real scale shock absorber specimen has been exposed to a large scale heptane pool fire test. A dedicated facility makes it possible to simulate the thermal power of the package contents and to measure in real time the heat transfer at the rear surface of the absorber. After a pool fire of 35 min duration, wood combustion continued for four days. Significant values were measured on the contact surface between lid and shock absorber for heat flux (up to 8 kW m?2) and temperatures (reaching 460°C). The impact of wood smouldering induced heat fluxes on typical lid gaskets has also been evaluated.  相似文献   

18.
以交换器入口端和蒸发器出口端的管道为例,研究管道中液态钠泄漏所产生喷射钠火的成因和影响后果,研究实际泄漏情况下钠的泄漏流速和形成钠滴的大小,比较模拟水喷射下的水流速和水滴大小,理解液滴在不同流量下和不同大小喷嘴的喷射形式和相互关系,选择合适的钠喷射喷嘴开展钠喷射实验,获得喷射钠火的相关数据,帮助理解钠喷射燃烧现象。  相似文献   

19.
杨红义  宋维 《原子能科学技术》2020,54(11):2113-2120
钠火是钠冷快堆的典型事故,钠火事故情景计算机模拟仿真是对钠火事故风险评价的有力工具。本文以常规火灾三维计算流体力学软件FDS为平台,增加钠火燃烧模型,包括燃烧热模型、燃烧速率模型、喷射液钠粒径分布模型等,完成了钠火情景模型的开发,并通过与SPHINCS钠火试验和计算结果的温度分布与氧气含量对比,验证了模拟技术和模型开发方案的可行性。本文的研究成果能为后续钠火仿真模拟程序的开发提供研究基础和经验参考。  相似文献   

20.
Sodium fire is a typical accident of sodium-cooled fast reactor. Simulation of sodium fire accident scenario by software is a powerful tool for risk assessment of sodium fire accident. In this paper, the conventional fire three-dimensional computational fluid dynamics software FDS was used as a platform to add a sodium fire combustion model, including combustion heat model, combustion rate model, spray liquid sodium particle size distribution model, etc., and complete the development of sodium fire scenario modeling analysis program. And through the comparison with SPHINCS sodium fire test and calculation results, the feasibility of the method and development plan was verified. The research results of this paper can provide the research basis and experience reference for the development of the subsequent sodium fire simulation program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号