首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
Burnup calculations have been performed on a mini fuel assembly containing 21 fuel rods and four water holes at the corners. The fuel rod positions were filled with 4% enriched UO2 fuel and with either reactor grade or weapons grade plutonium mixed in an inert matrix. The ratio between the UO2 and the IMF rods was varied to investigate the influence of the UO2 fuel on the dynamics of the assembly. From a simple reactor model with one delayed neutron group and first-order fuel and temperature feedback mechanisms, the linear transfer function from reactivity to reactor power was calculated that was subsequently used in a root-locus analysis. From this, it is concluded that only 20% of the fuel rods need to be made of UO2 to have a fuel that is linearly stable up to 1000 days of irradiation.  相似文献   

2.
Intention of the ROX-LWR system research is to provide an option for utilization or disposition of surplus plutonium. Researches on inert matrix materials and irradiation performance shows that the most favorable candidate for the ROX fuel is a particle dispersed fuel where small particles consisted of yttria stabilized zirconia, PuO2 and some additives are homogeneously dispersed in spinel matrix. Reactor safety analyses show that the ROX fueled PWR core has nearly the same performability as the existing UO2 fueled PWR under both reactivity initiated accidents and loss of coolant accidents.  相似文献   

3.
本文主要对聚变-裂变混合堆增殖乏燃料在压水堆组件中使用的可能性进行了初步研究。根据聚变 裂变混合堆增殖乏燃料的特点,给出了的聚变-裂变混合堆增殖乏燃料压水堆组件设计方案,分析组件的燃料温度系数、慢化剂温度系数等参数。结果表明:聚变 裂变混合堆乏燃料组件的特性与全铀组件的特性相似。在相同的易裂变同位素质量百分比情况下,本文给出的组件设计方案的功率不均匀系数更小。研究结果可为未来实现聚变 裂变混合堆和压水堆联合循环系统提供技术支持。  相似文献   

4.
Fuel breeding is one of the essential performances for a self-sustaining reactor system which can maintains the fuel sustainability while the reactor produces energy and consumes the fissile materials during operation. Thorium cycle shows some advantageous on higher breeding characteristics in thermal neutron spectrum region as shown in the Shippingport reactor and molten salt breeder reactor (MSBR) project. In the present study, the feasibility of large and small water cooled thorium breeder reactors is investigated under equilibrium conditions where the reactors are fueled by 233U–Th oxide and they adopts light water coolant as moderator. The key properties such as required enrichment, breeding capability, and initial fissile inventory are evaluated. The conversion ratio and fissile inventory ratio (FIR) are used for evaluating breeding performance. The results show the feasibility of breeding for small and large reactors. The breeding performance increases with increasing power output and lower power density. The small reactor may achieve the breeding condition when the fuel pellets' power density of about 22.5 W/cm3 and burnup of about 20 GWd/t.  相似文献   

5.
Investigations of neutronic analysis and temperature distribution in fuel rods located in a blanket driven ICF (Inertial Confinement Fusion) have been performed for various mixed fuels and coolants under a first wall load of 5 MW/m2. The fuel rods containing ThO2 and UO2 mixed by various mixing methods for achieving a flat fission power density are replaced in the blanket and cooled with different coolants; natural lithium, flibe, eutectic lithium and helium for the nuclear heat transfer. It is assumed that surface temperature of the fuel rod increases linearly from 500 °C (at top) to 700 °C (at bottom) during cooling fuel zone. Neutronic and temperature distribution calculations have been performed by MCNP4B Code and HEATING7, respectively. In the blanket fueled with pure UO2 and cooled with helium, M (fusion energy multiplication ratio) increases to 3.9 due to uranium having higher fission cross-section than thorium. The high fission energy released in this blanket, therefore, causes proportionally increasing of temperature in the fuel rods to 823 °C. However, the M is 2.00 in the blanket fueled with pure ThO2 and cooled with eutectic lithium because of more capture reaction than fission reaction. Maximum and minumum values of TBR (tritium breeding ratio) being one of main neutronic paremeters for a fusion reactor are 1.07 and 1.45 in the helium and the natural lithium coolant blanket, respectively. These consequences bring out that the investigated reactor can produce substantial electricity in situ during breeding fissile fuel and can be self-sufficient in the tritium required for the DT fusion driver in all cases of mixed fuels and coolant types. Quasi-constant fission power density profiles in FFB (fissile fuel breeding) zone are obtained by parabolically increasing mixture fraction of UO2 in radial and axial directions for all coolant types. Such as, in the helium coolant blanket and the case of PMF (parabolically mixed fuel), Γ (peek-to-average fission power density ratio) of the blanket is reduced to 1.1, and the maximum temperatures of the fuel rods in radial direction of the FFB zone are also quasi-constant. At the same time, in the case of PMF, for all coolant types, the temperature profiles in the radial direction of the fuel rods rise proportionally with surface temperature from the top to the bottom of fuel rods in the axial direction. In other words, for each radial temperature profile in the axial direction, temperature differences between centerline and surface of the fuel rods are quasi-constant. According to the coolant types, these temperature diffences vary between 30 and 45 °C.  相似文献   

6.
The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN.

It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the 241Pu content in the initial fuel, and the decay heat mainly depends on 238Pu and 244Cm. The contribution of 244Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum. In addition, from the waste disposal point of view, the characteristics of the heat generation FP elements, the platinum group metals, Mo and the long-lived FPs (LLFPs) were also investigated.  相似文献   


7.
In this study, neutronic analysis of the HYLIFE-II reactor was investigated by inserting fuel rods containing UC or mixed ThC–UC into reflector zone partially. Four different coolants, namely, flibe, helium, natural lithium, and light water were considered in the fissile fuel breeding zone for comparison. Neutron transport calculations per incident (D,T) fusion neutron were performed by using the code Scale 4.3 under resonance-effect and resonance-free conditions. Numerical results pointed out that replacing the reflector zone by fissile fuel breeding zone even with a thickness of 14 cm improved the neutronic performance remarkably with respect to energy amplification and fissile fuel breeding.  相似文献   

8.
A conceptual design study was carried out on a super high-burnup mixed-oxide (MOX) fuel assembly (SHB FA) for pressurized water reactors (PWRs) using transuranium (TRU). This study aims to avoid the surplus plutonium (Pu) accumulation and to reduce the accumulation of long-lived radioactive minor actinides (MAS) by utilizing the currently existing PWRs under the condition that the Japanese program to develop fast breeder reactors (FBRs) is tend to delay. For this purpose, an SHB FA with discharged burnup of ?80 GWd/t was investigated by utilizing MAS positively as both burnable absorbers and fissile suppliers and loading high-content Pu. It is possible to load the SHB FAs in a current PWR together with UO2 FAs and to use 2.5 times as much amount of Pu as that in a standard 1/3 MOX core. Moreover, it is found to be possible to reduce the total number of fresh FAs further from that of a high-burnup (55 GWd/t in maximum) UO2 (4.9 wt%) core and also to reduce the accumulation of MAS in the nuclear fuel cycle significantly.  相似文献   

9.
为保证21世纪中国经济的持续稳定地高速增长,必须充分发挥核能的巨大潜力,使之配合其他可再生能源同步增长,及早大规模替代煤炭等化石能源。由于目前国内大量兴建的核电站以压水堆为主,需要消费大量天然铀资源,倚靠廉价铀供应难于维持长期增长,必须依靠快中子增殖生产人造裂变燃料——钚,才能摆脱天然铀原料短缺的束缚。然而,传统的快中子增殖堆的核燃料增产速度较慢,难于配合中国核电的高速增长。本文介绍一种先进快中子增殖堆(AFBR)方案,其中利用在线连续换料的空心球形燃料元件,依靠载热剂的出入口之间的温度差实现满功率自然循环,可以成倍地提高燃料比功率与核燃料增殖速度。本快中子增殖堆改进了俄罗斯称为"天然安全"的BREST铅冷快堆设计方案,成为无须人为控制的"核热泉",它能在不设置加压泵及高位铅池的情况下,自动按外部负荷需要供应必要的热量,完全依靠自然循环将全部裂变热能及停堆后堆芯余热散出,不至对环境产生放射性污染。  相似文献   

10.
In our previous studies we analysed the plutonium burning performance of various kinds of fuel, based on mixing plutonium oxide with thorium oxide (TOX), or with inert matrix (IMF), or with inert matrix plus a limited addition (doping) of thorium oxide (TD-IMF). The present paper includes the neutronic analysis of a metal-based fuel variant and of fissile material recycling in TOX fuels. If the recycled fuel is topped with weapons grade plutonium (WG-Pu) as fissile material, it is possible to sustain indefinitely a closed cycle.  相似文献   

11.
钍是一种可转换材料,将其转换成233U能极大提高现有核燃料资源的储量。为实现对钍的合理利用,以模块式柱状高温气冷堆GT-MHR的燃料组件作为研究对象,选取低浓缩铀、武器级钚、核反应堆级钚等作为其启动燃料。利用栅格输运计算程序DRAGON对这3种启动燃料下的钍基柱状燃料组件的寿期初中子能谱、无限增殖系数、燃耗、转换比以及233U和232Th的含量等参数进行了分析。结果表明,在易裂变物质初装量约为9%时,与低浓缩铀和武器级钚相比,核反应堆级钚作为启动燃料时组件寿期初中子能谱较硬、转换比较高;其燃耗达90 GW•d/tHM;其无限增殖系数在寿期内的波动最小;燃耗为75 GW•d/tHM时组件中233U存余量与232Th消耗量之比达0.566。  相似文献   

12.
The fissile breeding capability of a (D,T) fusion-fission (hybrid) reactor fueled with thorium is analyzed to provide nuclear fuel for light water reactors (LWRs). Three different fertile material compositions are investigated for fissile fuel breeding: (1) ThO2; (2) ThO2 denaturated with 10% natural-UO2 and (3) ThO2 denaturated with 10% LWR spent fuel. Two different coolants (pressurized helium and Flibe ‘Li2BeF4’) are selected for the nuclear heat transfer out of the fissile fuel breeding zone. Depending on the type of the coolant in the fission zone, fusion power plant operation periods between 30 and 48 months are evaluated to achieve a fissile fuel enrichment quality between 3 and 4%, under a first-wall fusion neutron energy load of 5 MW/m2 and a plant factor of 75%. Flibe coolant is superior to helium with regard to fissile fuel breeding. During a plant operation over four years, enrichment grades between 3.0 and 5.8% are calculated for different fertile fuel and coolant compositions. Fusion breeder with ThO2 produces weapon grade 233U. The denaturation of the 233U fuel is realized with a homogenous mixture of 90% ThO2 with 10% natural-UO2 as well as with 10% LWR spent nuclear fuel. The homogenous mixture of 90% ThO2 with 10% natural-UO2 can successfully denaturate 233U with 238U. The uranium component of the mixture remains denaturated over the entire plant operation period of 48 months. However, at the early stages of plant operation, the generated plutonium component is of weapon grade quality. The plutonium component can be denaturated after a plant operation period of 24 and 30 months in Flibe cooled and helium cooled blankets, respectively. On the other hand, the homogenous mixture of 90% ThO2 with 10% LWR spent nuclear fuel remains non-prolific over the entire period for both, uranium and plutonium components. This is an important factor with regard to international safeguarding.  相似文献   

13.
In order to assess the feasibility of utilizing plutonium in thermal reactors, build-up and decay of actinide nuclides have been studied for BWR, PWR, HWR, HTGR and LMFBR, which are uranium-oxide fueled or mixed-oxide fueled, and which produce electric power of 1,000MW. The following items were examined;

1. quantities of actinide nuclides build-up in the reactor

2. build-up and decay of activities of actinides in the spent fuel

3. build-up and decay of activities of actinides after reprocessing, and

4. variation of isotopie composition of plutonium with high burn-up.

It is concluded from the calculated results that precautions should be taken against high activities of resultant actinides if plutonium is utilized as a fissile material for thermal reactors. To make reprocessing and high-level waste management easy and practical, it is recommended that a thermal reactor should be fueled with uranium, the plutonium produced in a thermal reactor should be used in a fast reactor, and plutonium produced in the blanket of a fast reactor is more appropriate as fast reactor fuel than that from a thermal reactor.  相似文献   

14.
An axial fuel shuffling strategy is proposed based on the mechanism of the nuclear fission traveling wave and implemented numerically in the calculation for a supercritical water cooled fast reactor (SCWFR). The ERANOS code is adopted to perform the neutronics and burn-up calculations, and the calculation scheme for axial fuel shuffling and coolant density coupling are set up. The parametric studies of a typical PWR with Th-U and U-Pu (235U instead of 239Pu) conversions by burn-up and keff calculations indicate that the breeding effects only exist in configurations with very low water content and the conversion or breeding becomes worse as the initial enrichment is increasing. The shuffling calculations for the 1-D SCWFR model described in this paper brought about some interesting results for a certain range of water content. The results indicate that the non-enriched fresh fuel is not possible for both Th-U and U-Pu conversions. As could be expected due to the η-values of the main fissile isotopes 233U and (235U, 239Pu), respectively, the Th-U conversion needs a lower enrichment, and results in a slightly higher burn-up than the U-Pu conversion. The asymptotic power density distribution of the Th-U conversion is broader and lower than that of the U-Pu conversion. By reducing the water volume fraction, an increased burn-up can be achieved with correspondingly reduced fuel shuffling speed and reduced initial enrichment. Furthermore, the steady state calculations for the asymptotic state show that the Th-U conversion is superior to the U-Pu one concerning SCWFR safety aspects, where the absolute value of the Doppler constant is larger and the coolant feedback is negative for the Th-U conversion, while the coolant feedback is positive for the U-Pu one.  相似文献   

15.
An overview of current nuclear power generation and fuel cycle strategies in Europe is presented, with an emphasis on options for the management of separated plutonium in the medium to long term. Countries which have opted for reprocessing of spent fuel have had to contend with increasing inventories of separated plutonium. Of the various potential options for utilisation or disposition of these stockpiles, only light water reactor (LWR) mixed-oxide (MOX) fuel programmes are sufficiently technologically mature to be fully operational in several European countries at present. Such reprocessing-recycling programmes allow for a stabilisation of the overall separated plutonium stocks, but not for a significant reduction in the stockpile. Moreover, the quality of recycled plutonium decreases at each potential step of re-irradiation. Therefore, optimised or new ways of managing the plutonium stocks in the medium to long term are required. In the present overview we consider the most promising options for reactor utilisation of plutonium in both near-term future reactor and Generation IV systems.  相似文献   

16.
The concepts concerning a nuclear reactor cooled by water at supercritical pressure (25 MPa) are presented. The system has one loop. Superheating the coolant to 530°C makes it possible to obtain ~44% efficiency. On the basis of the neutron spectrum, the reactor is a fast resonance reactor. The tight array of fuel elements and the lower water density make it possible to obtain plutonium fuel breeding ratios ~0.94. The problems which must be solved to build such a reactor are discussed.  相似文献   

17.
The supercritical-water-cooled power reactor (SCPR) is expected to reduce power costs compared with those of current LWRs because of its high thermal efficiency and simple reactor system. The high thermal efficiency is obtained by supercritical pressure water cooling. The fuel cladding surface temperature increases locally due to a synergistic effect from the increased coolant temperature, the expanded flow deflection due to coolant density change and the decreased heat transfer coefficient, if the coolant flow distribution is non-uniform in the fuel assembly. Therefore, the SCPR fuel assembly is designed using a subchannel analysis code based on the SILFEED code for BWRs.

The SCPR fuel assembly has many square-shaped water rods. The fuel rods are arranged around these water rods. The fuel rod pitch and diameter are 11.2 mm and 10.2 mm, respectively. Since coolant flow distribution in the fuel assembly strongly depends on the gap width between the fuel rod and the water rod, the proper gap width is examined. Subchannel analysis shows that the coolant flow distribution becomes uniform when the gap width is 1.0 mm. The maximum fuel cladding surface temperature is lower than 600°C and the temperature margin of the fuel cladding is increased in the design.  相似文献   

18.
This study presents the effects of mixture fractions of nuclear fuels (mixture of fissile–fertile fuels and mixture of two different fertile fuels) and 6Li enrichment on the neutronic parameters (the tritium breeding ratio, TBR, the fission rate, FR, the energy multiplication ratio, M, the fissile breeding rate, FBR, the neutron leakage out of blanket, L, and the peak-to-average fission power density ratio, Γ) of a deuterium–tritium (D–T) fusion neutron-driven hybrid blanket. Three different fertile fuels (232Th, 238U and 244Cm), and one fissile fuel (235U) were selected as the nuclear fuel. Two different coolants (pressurized helium and natural lithium) were used for the nuclear heat transfer out of the fuel zone (FZ). The Boltzmann transport equation was solved numerically for obtaining the neutronic parameters with the help of the neutron transport code XSDRNPM/SCALE4.4a. In addition, these calculations were performed by also using the MCNP4B code. The sub-limits of the mixture fractions and 6Li enrichment were determined for the tritium self-sufficiency. The considered hybrid reactor can be operated in a self-sufficiency mode in the cases with the fuel mixtures mixed with a fraction of equal to or greater than these sub-limits. Furthermore, the numerical results show that the fissile fuel breeding and fission potentials of the blankets with the helium coolant are higher than with the lithium coolant.  相似文献   

19.
Cell calculations of a Th-fueled PWR are carried out to discuss the burnup characteristics, coolant void reactivity coefficients, and the effectiveness of the mechanical spectral shift control method by fertile rod insertion. It is shown that the Th fuel can achieve a high discharge burnup with less increase of the fissile concentration than in the U fuel. It is also shown, particularly in the Th-fueled cores, that the fertile rods are effective for the spectral shift control and for improving the conversion ratio.  相似文献   

20.
This study addresses the issue of alternative pathways for breeding plutonium in a 900 MWe three loop thermal pressurized water reactor (PWR), either fueled with uranium fuel (3.5% U-235) or with mixed fuel (20% MOX). During the operation of a nuclear reactor the in-core neutron flux and the ex-core neutron flux are monitored with flux detectors. At the places where those detectors operate, the guide thimbles and the vessel wall, respectively, the neutron flux can be used to irradiate material samples. This paper investigates whether it would be possible to produce plutonium by breeding it at the walls of a PWR vessel and/or in the guide thimbles. The neutron flux in the reactor and the corresponding multi-group spectra are estimated with Monte Carlo simulations for different positions at the vessel wall of a PWR operating with either UO2 or MOX. Then the irradiation of fresh uranium samples at the vessel wall and in the guide thimbles are calculated and the isotopic composition of the irradiated samples are determined. The minimum irradiation period and the necessary minimum amount of fresh uranium to breed different grades of plutonium are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号