首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Based on the metallurgical point of view, we aimed to design a new form of copper catalysts with high thermal stability and activity. Delafossite CuCrO2 has been studied as a precursor for copper catalyst. The CuCrO2 was reduced to fine dispersion of Cu and Cr2O3 particles with porous structure by the treatment in H2 at 600 °C, which exhibited much higher activity and thermal stability for steam reforming of methanol (SRM) than those of the CuO and/or Cr2O3 catalysts. Sintering of Cu particles was significantly suppressed even after H2 reduction at 600 °C. Moreover, the CuCrO2 can be regenerated by calcination in air at 1,000 °C where the activity is also restored completely even after sintering at high temperatures. Fine porous structure generated by the reduction of CuCrO2 and immiscible interaction between Cu and Cr2O3 are important in stabilizing of copper nanoparticles. Based on these findings, we propose that the CuCrO2 is an effective precursor for a high performance copper catalyst.  相似文献   

2.
Ultra-fine ZnAl2O4 spinel hydrogel precursor synthesized from mixed salt solutions of Zn2+ and Al3+ ions using ammonium hydroxide–hexamethylenetetramine as basic media for co-precipitation was used as bonding material and sintering aid for pure alumina system. The hydrogel powder exhibited some well-defined ZnAl2O4 spinel phases at 800 °C. Alumina compacts were fabricated by incorporating small proportions of the precursor in alumina powder and firing at different temperatures (1350–1500 °C). The degree of densification was studied by measurement of fired shrinkage, apparent porosity, bulk density and cold crushing strength. Phase compositions and microstructural features of sintered samples were evaluated by XRD and SEM respectively. Addition of 0.2% hydrogel powder to alumina exhibited remarkable influence on development of high mechanical strength. The in situ formed ZnAl2O4 spinel dopant acted as a grain growth inhibitor in the alumina system.  相似文献   

3.
In this study, various Cu-based spinel compounds, i.e., CuFe2O4, CuMn2O4, CuAl2O4 and CuLa2O4, were fabricated by a solid-state reaction method. Reduction behaviors and morphological changes of these materials have been characterized by H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Moreover, the catalytic properties for steam reforming of methanol (SRM) of these Cu-based spinel compounds were investigated. H2-TPR results indicated that the reducibility of Cu-based spinel compounds was strongly dependent on the B-site component while the CuFe2O4 catalyst revealed the lowest reduction temperature (190 °C), followed respectively by CuAl2O4 (267 °C), CuMn2O4 (270 °C), and CuLa2O4 (326 °C). The reduced CuAl2O4 catalyst demonstrated the best performance in terms of catalytic activity. Based on the SEM and XRD results, pulverization of the CuAl2O4 particles due to gas evolution and a high concentration of nanosized Cu particles (≈50.9 nm) precipitated on the surfaces of the Al2O3 support were observed after reduction at 360 °C in H2. The BET surface area of the CuAl2O4 catalyst escalated from 5.5 to 13.2 m2/g. Reduction of Cu-based spinel ferrites appear to be a potential synthesis route for preparing a catalyst with high catalytic activity and thermal stability. The catalytic performance of these copper-oxide composites was superior to those of conventional copper catalysts.  相似文献   

4.
Spherical LiMn2O4 particles were successfully synthesized by dynamically sintering spherical precursor powders, which were prepared by a slurry spray-drying method. The effect of the sintering process on the morphology of LiMn2O4 was studied. It was found that a one-step static sintering process combined with a spray-drying method could not be adopted to prepare spherical products. A two-step sintering procedure consisting of completely decomposing sprayed precursors at low temperature and further sintering at elevated temperature facilitated spherical particle formation. The dynamic sintering program enhanced the effect of the two-step sintering process in the formation of spherical LiMn2O4 powders. The LiMn2O4 powders prepared by the dynamic sintering process, after initially decomposing the spherical spray-dried precursor at 180 °C for 5 h and then sintering it at 700 °C for 8 h, were spherical and pure spinel. The as-prepared spherical material had a high tap density (ca. 1.6 g/cm3). Its specific capacity was about 117 mAh/g between 3.0 and 4.2 V at a rate of 0.2 C. The retention of capacity for this product was about 95% over 50 cycles. The rate capability test indicated that the retention of the discharge capacity at 4C rate was still 95.5% of its 0.2 rate capacity. All the results showed that the spherical LiMn2O4 product made by the dynamic sintering process had a good performance for lithium ion batteries. This novel method combining a dynamic sintering system and a spray-drying process is an effective synthesis method for the spherical cathode material in lithium ion batteries.  相似文献   

5.
The effect of the addition of manganese to Cu/SiO2 catalysts for cyclohexanol dehydrogenation reaction was investigated. At reaction temperature of 250 °C, the conversion and the selectivity to cyclohexanone were both increased with the addition of manganese to Cu/SiO2 catalyst. However, as the reaction temperature was further increased, higher loading of manganese in Cu/SiO2 catalyst led to a decrease in the conversion of cyclohexanol. Manganese in Cu/ SiO2 catalyst decreased the reduction temperature of copper oxide, increased the dispersion of copper metal, and decreased the selectivity to cyclohexene. It was found that the dehydration of cyclohexanol to cyclohexene occurred on the intermediate acid sites of catalyst. At high Mn loading, catalyst surface was more enriched with manganese in used catalyst compared to that in freshly calcined or reduced catalyst, which may account for the sharp decrease of the conversion at high temperature of 390 °C. Upon reduction, copper manganate on silica was decomposed into fine particles of copper metal and manganese oxide (Mn3O4).  相似文献   

6.
Different types of dense 5–97% ZrO2–MgAl2O4 composites have been prepared using a MgAl2O4 spinel obtained by calcining a stoichiometric mixture of aluminium tri-hydroxide and caustic MgO at 1300 °C for 1 h, and a commercial yttria partially stabilized zirconia (YPSZ) powder as starting raw materials by sintering at various temperatures ranging from 1500 to 1650 °C for 2 h. The characteristics of the MgAl2O4 spinel, the YPSZ powder and the various sintered products were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area, particle size analysis, Archimedes principle, and Vickers indentation method. Characterization results revealed that the YPSZ addition increases the sintering ability, fracture toughness and hardness of MgAl2O4 spinel, whereas, the MgAl2O4 spinel hampered the sintering ability of YPSZ when sintered at elevated temperatures. A 20-wt.% YPSZ was found to be sufficient to increase the hardness and fracture toughness of MgAl2O4 spinel from 406 to 1314 Hv and 2.5 to 3.45 MPa m1/2, respectively, when sintered at 1600 °C for 2 h.  相似文献   

7.
This work is devoted to the investigation of the influence of the preparation process on the physical-chemical properties of a copper spinel applied as catalyst for hydrocarbon (HC) oxidation. Samples of CuFe2O4 mixed oxide belonging to the inverted spinel type structure have been obtained by high temperature solid state reaction and by wet chemical synthesis methods, applying nitrate and citrate precursor procedures, within the thermal range from 150 to 700 °C.The bulk catalysts were characterized by XRD, TPR, FTIR, SEM-EDX, TEM and Mössbauer spectroscopy. Propane combustion was performed as a reaction test.In this work it is demonstrated that the calcination temperature and chemical synthesis affect the crystal properties and cation distribution in the spinel structure, microstructure, surface area and reducibility; which are among the most relevant physical chemical properties for the catalytic activity. The materials obtained by wet chemical procedure, through nitrate and citrate routes, are better suited for propane combustion. This feature is assigned to the microstructure, to the presence of nanometric size particles and also to the cation distributions in the spinel sublattices of these materials.  相似文献   

8.
Ru/Al2O3 catalysts were prepared by sol-gel method with an organic additive (ethylene glycol). The effect of the addition of ethylene glycol on the properties of Ru/Al2O3 was characterized by BET, XRD, EXAFS, and TGA/DTA. Ethylene glycol was effective to promote the phase transition of -Al2O3 even at 800°C calcination with high surface area. This finding is ascribed to the modified structure of aluminum alkoxide by ethylene glycol addition in the solution state. Ethylene glycol is also effective to get small particles of ruthenium after the reduction at 500°C. The EXAFS and UV-Vis spectra of Ru complex revealed that the coordination structure of Ru depended on the additive used. The ethylene glycol sol prefers to form octahedral Ru complex. This Ru complex in alumina matrix is stable up to 200°C and forms small Ru oxide particles even at 300°C calcination. This suggests that ethylene glycol coordinates to the Ru complex as well as to aluminum ion in the initial state, which is important to control the final properties of the Ru/Al2O3 catalyst.  相似文献   

9.
To increase the ability of Fe-Cu-Co based catalyst for hydrogen activation, the catalyst loaded with Pd was studied in the conversion of syngas to higher alcohols. X-ray diffraction (XRD), N2 physisorption, H2 temperature-programmed reduction (TPR) and H2 temperature-programmed desorption (H2-TPD) were applied to characterize the catalysts. The results of XRD showed that the Pd-loaded Fe-Cu-Co based samples were mainly composed of CuFe2O4 and CuO. After reduction, metallic Cu and Fe along with minor CuFe2O4 were identified, and the amount of CuFe2O4 decreased with the increase of the Pd content. H2-TPR revealed that Pd facilitated the reduction of Fe-Cu-Co based catalyst. H2-TPD confirmed that Pd enhanced the ability of Fe-Cu-Co based catalyst for H2 activation. Therefore, the activity of the catalyst and the selectivity of alcohols were greatly improved. Over the Fe-Cu-Co based catalyst loaded with 0.5 wt.% Pd, the selectivity and the time-space yield of alcohols reached 58.7% and 1.53 g mL− 1 h− 1 at 350 °C, 6.0 MPa, GHSV = 10,000 h− 1 and n(H2)/n(CO) = 2.4.  相似文献   

10.
Fe/Al2O3 catalysts with different Fe loadings (10-90 mol%) were prepared by hydrothermal method. Ethanol decomposition was studied over these Fe/Al2O3 catalysts at temperatures between 500 and 800 °C to produce hydrogen and multi-walled carbon nanotubes (MWCNTs) at the same time. The results showed that the catalytic activity and stability of Fe/Al2O3 depended strongly on the Fe loading and reaction temperature. The Fe(30 mol%)/Al2O3 and Fe(40 mol%)/Al2O3 were both the effective catalyst for ethanol decomposition into hydrogen and MWCNTs at 600 °C. Several reaction pathways were proposed to explain ethanol decomposition to produce hydrogen and carbon (including nanotube) at the same time.  相似文献   

11.
《Ceramics International》2020,46(13):21166-21171
Rational design and exploration of high infrared radiation materials with remarkable emissivity at high temperatures are always challengeable. In the work, the spinel copper ferrite products with exceptional infrared radiation performance in the wavenumber range of 3–5 μm are massively fabricated through a simple two-step strategy including hydrothermal treatment and low temperature calcination process. Detailed physicochemical characterizations demonstrate that specific structures, compositions, optical behaviors and infrared radiant properties of resultant CuFe2O4 samples are enormously dependent upon the involved hydrothermal temperatures/time and annealing temperatures. The synthetic parameters were optimized as hydrothermal process at 150 °C for 16 h and subsequent calcination at 800 °C. The desirable crystallinity, hetero-composition and lower band gap energy synergistically endow the optimal CuFe2O4 sample with super high infrared radiation emissivity of ~0.913 evaluated at the testing temperature of 800 °C. Our contribution here will provide significant guidance for scalably low-temperature synthesis of high infrared radiation materials with superb emissivity at high temperatures.  相似文献   

12.
Spherical spinel LiMn2O4 particles were successfully synthesized from a mixture of manganese compounds containing commercial manganese carbonate by sintering of the spray-dried precursor. Different preparation routes were investigated to improve the tap density and to enhance the electrochemical performance of LiMn2O4. The structure and morphology of the LiMn2O4 particles were confirmed by X-ray diffraction (XRD) and scanning electron microscopy. The results showed that hollow spherical LiMn2O4 particles could be obtained when only commercial MnCO3 was used as the manganese source. These particles had a low tap density (ca.0.8 g/cm3). Perfect micron-sized spherical LiMn2O4 particles with good electrochemical performance were obtained by spray-drying a slurry composed of MnCO3, Mn(CH3CHOO)2 and LiOH, followed by a dynamic sintering process and a stationary sintering process. The as-prepared spherical LiMn2O4 particles comprised hundreds of nanosize crystal grains and had a high tap density(ca. 1.4 g/cm3). The galvanostatic charge-discharge measurements indicated that the spherical LiMn2O4 particles had an initial capacity of 121 mAh/g between 3.0 and 4.2 V at 0.2 C rate and still delivered a reversible capacity of 112 mAh/g at 2 C rate. The retention of capacity after 50 cycles was still 96% of its initial capacity at 0.2 C. All the results showed that the as-prepared spherical LiMn2O4 particles had an excellent electrochemical performances. The methods we used for preparing spherical LiMn2O4 are energy-saving and suitable for industrial application.  相似文献   

13.
Rh double-oxide compound (MnRh2O4) was formed by air calcination treatment of manganese oxide-promoted Rh/SiO2 catalyst at 900 °C, and characterized by Rietveld analysis of the X-ray diffraction pattern. The MnRh2O4 particles on SiO2 were reduced to smaller Rh metal particles by H2 treatment at 300 °C, and this catalyst system exhibited a strong Rh-MnO x interaction behavior in catalytic studies of ethane hydrogenolysis and cyclohexane dehydrogenation reactions.  相似文献   

14.
Cu/SiO2 catalysts have been successfully prepared via urea hydrolysis method. The catalysts have been systematically characterized by X-ray diffraction, high-resolution transmission electron microscopy, N2-physisorption and H2 temperature-programmed reduction. The results demonstrated the presence of copper nanoparticles and their high dispersion on the SiO2 support. Catalysts with different copper loadings were prepared, and their performances in the hydrogenation of dimethyl oxalate to ethylene glycol were studied. A 100% conversion of dimethyl oxalate and maximum 98% selectivity of ethylene glycol were reached with 15.6 wt.% copper loading at 200 °C and 2 MPa. Furthermore, under the same reaction conditions, the catalyst can maintain the selectivity of 90% when the reduction temperature reduced from 350 °C to 200 °C. The high activity and selectivity over the catalyst may be ascribed to the homogenously distribution of copper nanoparticles on the large surface.  相似文献   

15.
Cu/ZnO/ZrO2 catalysts were prepared by a route of solid-state reaction and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts were investigated by N2 adsorption, XRD, TEM, N2O titration and H2-TPR techniques. The results show that the dispersion of copper species decreases with the increase in calcination temperature. Meanwhile, the phase transformation of zirconia from tetragonal to monoclinic was observed. The highest activity was achieved over the catalyst calcined at 400 °C. This method is a promising alternative for the preparation of highly efficient Cu/ZnO/ZrO2 catalysts.  相似文献   

16.
The effect of various additives (V, Cr, Mn, Fe, Co, Ni, Cu and Pb) on the oxygen storage capacity (OSC) of CeO2 and Rh/CeO2 catalysts was investigated. Copper is an excellent promoter of OSC conferring to Rh a very high resistance to sintering (900°C, 2% O2).  相似文献   

17.
Both flat and corrugated wire mesh sheets were coated with aluminum powder by using electrophoretic deposition (EPD) method. Controlled thermal sintering of coated samples yielded uniform porous aluminum layer with a thickness of 100 μm that was attached firmly on the wire meshes. Subsequent controlled calcination formed a finite thickness of Al2O3 layer on the outer surface of each deposited aluminum particles, which resulted in the formation of Al2O3/Al double-layered composite particles that were attached firmly on the wire surface to form a certain thickness of porous layer. A rectangular-shaped wire-mesh honeycomb (WMH) module with triangular-shaped channels was manufactured by packing alternately the flat sheet and corrugated sheet of the Al2O3/Al-coated wire meshes. This WMH was further coated with V2O5-MoO3-WO3 catalyst by wash-coating method to be applied for the selective catalytic reduction (SCR) of NO with NH3. With an optimized catalyst loading of 16 wt%, WMH catalyst module shows more than 90% NO conversion at 240 °C and almost complete NO conversion at temperatures higher than 300 °C at GHSV 5,000 h−1. When compared with conventional ceramic honeycomb catalyst, WMH catalyst gives NO conversion higher by 20% due to reduced mass transfer resistance by the existence of three dimensional opening holes in WMH.  相似文献   

18.
Nickel niobate (NiNb2O6) supported on SiO2 was prepared by a chemical mixing method using mixed Ni and Nb citrate solutions. X-ray diffraction study showed that the NiNb2O6 compound was reduced to Ni metal and NbO2 after H2 treatment at 600 ° C, and a strong Ni-niobia interaction was induced after the decomposition of the compound: the ethane hydrogenolysis activity was suppressed severely after high temperature reduction at 600 ° C, and recovered by O2 treatment at 500 ° C followed by low-temperature reduction at 200 ° C. The selectivity of cyclohexane dehydrogenation was improved significantly by the Ni-niobia interaction, if compared with unpromoted Ni/SiO2 catalyst, and the structural change and catalytic behaviors were compared with those of Rh double oxides such as RhNbO4.  相似文献   

19.
Fused Fe-Cu based catalyst for higher alcohols synthesis (HAS) is characterized by XRD, TG-DTA, H2-TPD and DRIFTS of CO adsorption. The results of XRD reveal that the fused Fe-Cu based catalyst consists of Cu2O, CuFeO2 and CuFe2O4 species. After reduction, the metallic Fe and Cu are the main species, but minor CuFeO2 and CuFe2O4 species are also present. H2-TPD shows that in comparison with the pure Fe- or Cu-based sample, the ability of Fe-Cu based catalyst for activation of H2 is higher and the stronger metal-hydrogen bonds are formed. DRIFTS of CO adsorption indicates that CO is adsorbed on both metal and metal ion sites, where the dissociation of CO to C* and O* species and the formation of CO2 are observed. In situ DRIFTS investigation of CO + H2-TPSR over the Fe-Cu based catalyst shows that the dissociative activation of H2 is more difficult than the activation of CO, and carbonaceous and hydrocarbon fragment species only appears after the dissociative activation of H2. In addition, HAS over the Fe-Cu based catalyst is very complicated, where various intermediates including = CH2, − CHO, − OOCH, − OH and − C(= O)-R exist.  相似文献   

20.
D. Arumugam 《Electrochimica acta》2010,55(28):8709-8716
LiMn2O4 spinel cathode materials were coated with 0.5, 1.0, and 1.5 wt.% CeO2 by a polymeric process, followed by calcination at 850 °C for 6 h in air. The surface-coated LiMn2O4 cathode materials were physically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron microscopy (XPS). XRD patterns of CeO2-coated LiMn2O4 revealed that the coating did not affect the crystal structure or the Fd3m space group of the cathode materials compared to uncoated LiMn2O4. The surface morphology and particle agglomeration were investigated using SEM, TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 20 nm. The XPS data illustrated that the CeO2 completely coated the surface of the LiMn2O4 core cathode materials. The galvanostatic charge and discharge of the uncoated and CeO2-coated LiMn2O4 cathode materials were measured in the potential range of 3.0-4.5 V (0.5 C rate) at 30 °C and 60 °C. Among them, the 1.0 wt.% of CeO2-coated spinel LiMn2O4 cathode satisfies the structural stability, high reversible capacity and excellent electrochemical performances of rechargeable lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号