首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用共沉淀法制备碳酸盐前驱体,通过高温固相反应制备Na~+掺杂的富锂锰基正极材料Li_(1.2-x)Na_xNi_(0.13)Co_(0.13)Mn_(0.54)O_2(x=0,0.01,0.02,0.04,0.08).X射线衍射(XRD)和扫描电镜(SEM)分析表明,x≤0.04时为层状富锂锰基材料的α-NaFeO_2六方相结构,Na掺杂量过大时颗粒表面出现团聚絮状物并发现第二相—P2型层状氧化物.电化学测试发现适量的Na掺杂可提高材料的比容量、倍率和循环性能;掺杂量为0.02时电化学性能最佳:在2.0~4.6 V充放电, Li_(1.18)Na_(0.02)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2在0.1 C放电比容量为273.4 mAh/g,首次库伦效率为93.1%, 1 C循环100次后容量超过200 mAh/g,保持率为84.3%.离子半径较大的Na~+占据Li位,起到柱撑作用,稳定了结构,增大了层间距,利于Li~+扩散;此外,材料表面形成的P2型层状氧化物能够减缓层状结构向尖晶石结构的转变,从而提高了电化学性能.  相似文献   

2.
以共沉淀法制备的Ni-Mn包覆Co_3O_4前驱体和Li_2CO_3为原料,通过高温固相法制得了具有核壳结构的锂电池正极材料Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2.用扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射(XRD)和充放电测试表征了样品的形貌、晶体结构和电化学性能.结果表明,所制备的核壳结构Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2具有良好的电化学性能,在3.0~4.5 V和3.0~4.6 V,0.2 C下首次放电容量分别达到180.5 m A·h·g~(-1)和201.3 m A·h·g~(-1),在1 C下,循环50周后容量保持率分别为89.3%和63.3%.  相似文献   

3.
采用简单的液相研磨法制备了纳米MoS_2修饰的富锂锰基正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2。恒电流充放电测试结果表明,经过纳米MoS_2修饰的材料表现出优异的电化学循环稳定性能。3%MoS_2修饰的材料在0.5C倍率下经过120次循环后,放电比容量仍高达235mA·h/g,容量保留率为88.4%,相较于空白样153.8mA·h/g的放电比容量和70.1%的容量保留率有显著提高。此外,与空白样的0.70V相比,3%MoS_2修饰的材料经过120次循环后电压衰减仅为0.44V。可见,材料在循环过程中的电压衰减也得到了明显改善。  相似文献   

4.
为解决富锂锰基材料首圈效率低,倍率性能差的缺陷,采用静电纺丝法制备了Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2富锂锰基正极材料。实验结果表明,通过静电纺丝法制备的纳米纤维材料具有三维立体结构和更大的比表面积,提高反应活性并降低了锂离子传导阻抗,从而使得材料的倍率性能和放电容量得到了改善。在5 C倍率下,纺丝纤维放电比容量为175 mA·h/g,而沉淀颗粒仅为154 mA·h/g。此外,首圈效率和放电容量也得到了提升,从72.87%提升至81.93%,以上表明静电纺丝法制备的富锂锰基材料具有更优异的性能。  相似文献   

5.
在表面活性剂、超声振动和机械搅拌的协同作用下,采用共沉淀法制备镍钴锰复合氢氧化物前驱体(Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2),最后将制备得到的纳米片前驱体与碳酸锂(Li_2CO_3)采用高温固相法烧结合成三元层状正极材料(LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2)。对于实验制得的前驱体和正极材料使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电感耦合等离子体发射光谱仪(ICP-OES)以及电池测试仪对前驱体和正极材料进行表征和电化学性能的检测,以探究表面活性剂对正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和其前驱体的影响。实验结果表明:使用两种表面活性剂油胺(OA)和聚乙烯吡咯烷酮-K30(PVP-K30)所制备出的前驱体为近正六边形的纳米片,纳米片尺寸为400 nm左右。所制备出的正极材料在室温下,2.8~4.5 V,1C充放电条件下,其初始放电容量分别达到151.699和157.093 mAh·g~(-1),经过50次循环后容量保持率分别达到88.22%和99.04%。这样也表明所制备出的正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2具有良好的电化学性能。  相似文献   

6.
以Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2与碳酸锂为原料,采用高温固相法制备得锂离子电池正极材料LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2。用X射线衍射、扫描电镜以及充放电测试对样品进行表征,研究了烧结温度对材料电化学性能的影响。结果表明,当烧结温度为880℃时,合成的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2材料物相单一无杂项,具有标准的的ɑ-Na FeO_2晶型。SEM测试表明,产物为球形且球形度较好,颗粒粒度均一,平均粒度均在10μm。880℃烧结的材料在3.0~4.3 V、0.1 C的倍率下放电比容量可达188 m A·h/g,在1.0 C的倍率下循环10次后电池容量保持率为95.46%,表现出较好的电化学性能。  相似文献   

7.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

8.
研究了不同烧结温度及恒温保持时间对富锂锰基正极材料Li_(1+x)[Ni_(0.35)Mn_(0.65)]O_(2+y)形貌、结构及电化学性能的影响。XRD及SEM研究结果表明:所合成的Li_(1+x)[Ni_(0.35)Mn_(0.65)]O_(2+y)正极材料为层状α-NaFeO_2结构,类球形,单颗粒大小均匀。扣式电池测试结果表明:当电流密度为12.5 m A/g,测试电压在2.0~4.8 V时,Li_(1+x)[Ni_(0.35)Mn_(0.65)]O_(2+y)材料最高初始放电比容量为213.3 m A·h/g,首次放电效率为71.0%。扣电进行EIS测试,结果表明材料具有较小的电荷转移阻抗。  相似文献   

9.
采用共沉淀-高温固相法制备了富锂锰基正极材料Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2,并分别采用简单湿化学沉淀法和PVP辅助的湿化学沉淀法对其进行PrPO_4包覆改性。实验结果表明,通过PVP辅助包覆,包覆层更加均匀,材料的电化学性能得到了更为明显的提高。包覆3%-PVP样品首次放电容量高达286.7 mA·h/g,库伦效率89.6%,经过0.1C倍率下循环50圈,放电比容量仍有254mA·h/g,容量保持率由空白样的88.5%提高到95%。由此得出均匀的PrPO_4包覆层能有效提高富锂锰基正极材料的综合电化学性能。  相似文献   

10.
采用共沉淀法合成Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体,将前驱体和LiOH混合均匀后经高温煅烧合成了锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2,并对其进行电化学性能检测。试验表明,制备的电池在电压2.8~4.3V(vs.Li/Li+)区间内,0.1C倍率下的首次库伦效率为88.4%;在1C倍率下循环100次后,放电比容量为157.7mAh/g,容量保持率为96.6%。  相似文献   

11.
在传统碳酸酯电解液中添加氟代碳酸乙烯酯(FEC)可提高电解液的氧化分解电位,从而在高于4. 5 V(vs. Li/Li~+)电压下减少电解液溶剂的分解。用FEC部分或全部取代传统电解液中的碳酸乙烯酯(EC)溶剂,研究4. 7 V (vs. Li/Li~+)高电压下FEC对Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电化学性能的影响。结果表明,FEC的加入提高了Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的首次放电比容量及循环性能,且循环稳定性随FEC量的增加而变高,EC被FEC (33. 33%,质量分数)全部取代EC时电化学性能最佳;循环100周时,FEC为33. 33%的电解液中Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的比容量为200. 5 mAh·g~(-1),容量保持率为85. 72%,而传统电解液中Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的比容量在60周时衰减至115. 0 mAh·g~(-1),容量保持率仅为49. 89%。d Q/d V曲线表明,随FEC取代量的增加,循环过程中产生的电化学极化越小。X射线衍射(XRD)结果表明,在循环过程中,由于FEC的加入缓减了Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2结构的变化,且FEC全部取代EC时效果最佳。  相似文献   

12.
用固相反应法合成了Li~+掺杂的LiNi_(0.5)Mn_(1.5)O_4,并用XRD、SEM和恒电流充放电技术研究Li+掺杂对材料结构、形貌和充放电性能的影响。结果表明Li+掺杂和未掺杂LiNi_(0.5)Mn_(1.5)O_4均具有Fd3m尖晶石结构,掺杂的Li~+以固溶体形式存在,掺杂少量的Li+能显著提高材料循环性能,但放电比容量稍有降低,其中Li_(1.05)Ni_(0.45)Mn_(1.5)O_4的放电比容量为136.1 m A·h/g,循环30次后基本不变,具有很好的循环稳定性。  相似文献   

13.
采用MnCO3或MnO2为锰源,设计了两条工艺路线,并分析了这两种工艺对富锂正极材料Li1.2Mn0.54Ni0.13Co0.13O2结构、形貌、振实密度及电化学性能的影响。研究结果表明,两种工艺制备的材料都具有层状结构,二次颗粒都呈球形,球形颗粒的直径都在2~15μm,一次颗粒0.2~1.0μm;但是在两种不同的工艺下,球形颗粒的聚集程度不一,其中以MnO2为锰源,制备的材料的颗粒接触最为紧密,而且其振实密度高,为1.5g·cm-3。以制备出的材料作为电池的正极材料,组装2032扣式电池,在0.1C(20mA·g-1),电压范围2.0~4.8V,测试材料的首次充放电,其中以MnCO3为锰源,制备的材料的首次放电比容量为最高,为262.1mAh·g-1,首次库伦效率为76.8%。在不同倍率(0.2C,0.5C,1.0C和3.0C)下测试电池性能,以MnO2为锰源,3.0C下的放电比容量为183.5mAh·g-1。因此,采用MnO2为锰源制备出的富锂正极材料具有较高的倍率性能。  相似文献   

14.
通过共沉淀-高温固相法成功制备出粒径为200~300nm的富锂锰基正极材料Li_(1.2)[Ni_(0.13)Co_(0.13)Mn_(0.54)]O_2,并通过湿化学沉积法将富含氧空穴的MnMoO_4沉积在富锂材料表面,用于提高其电化学性能。研究发现,表面修饰的MnMoO_4成功在富锂材料表层诱导产生尖晶石LiMn_2O_4结构,这种特殊的表层异质结构能够有效减少电解液与本体材料发生的副反应,容纳首次充电过程中的氧流失,并提高Li+扩散能力。相比于初始材料,经MnMoO_4修饰后材料的首次库伦效率由79.95%提升到86.54%,循环100次保留的容量由175.8mA·h/g提高到205.7mA·h/g,表现出优异的综合电化学性能。  相似文献   

15.
三元正极材料具有优异的电化学性能,但也存在阳离子混排、压实密度不高、充放电效率较低、倍率性能不理想、高温存储和循环性不好等问题。为改善LiNi_(0.8)Co_(0.15)Al_(0.05)O_2的电化学性能,采用固相法制备了碳包覆的LiNi_(0.8)Co_(0.15)Al_(0.05)O_2/C复合材料,并讨论了包覆质量比分别为1.02%,2.01%和2.97%(质量分数)时对材料的结构、形貌和电化学性质的影响。X射线衍射(XRD)和扫描电镜(SEM)测试结果显示:所有样品均为α-NaFeO2六方层状结构,具有类球形形貌。电化学测试结果表明:包覆量为2.01%时材料的综合性能最好,0.1C首次放电比容量达175.5 mAh·g~(-1),未包覆的材料为158.9 mAh·g~(-1),包覆后比纯相LiNi_(0.8)Co_(0.15)Al_(0.05)O_2提高了10.5%;3.0C进行50次循环,容量保持率为88.2%,而未经碳包覆的材料只有75.6%;锂离子的扩散系数由未包覆时的2.05×10~(-13)cm~2·s~(-1)增大到3.76×10~(-12)cm~2·s~(-1),相应的电荷的转移阻抗由79.4Ω减小到53.6Ω。  相似文献   

16.
采用共沉淀法先合成[Ni_(0.83)Co_(0.11)Mn_(0.06)](OH)_2前驱体,在纯氧气氛下经过两段高温烧结生成LiNi_(0.83)Co_(0.11)Mn_(0.06)O_2正极材料。通过在前驱体配锂烧结过程中加入纳米TiO_2实现了Ti~(4+)掺杂,经过掺杂后的Li[Ni_(0.83)Co_(0.11)Mn_(0.06)]_(0.98)Ti_(0.02)O_2正极材料在1C电流密度下的放电比容量高达185.6mAh/g,循环100圈后容量维持在178.8mAh/g,容量保持率高达96.33%。  相似文献   

17.
采用共沉淀法制备了梯度核壳前驱体Ni_(0.8)Co_(0.08)Mn_(0.12)(OH)_2,并通过混锂煅烧合成了LiNi_(0.8)Co_(0.08)Mn_(0.12)O_2梯度正极材料。分别使用干混法和沉淀法对梯度正极材料进行了Al的掺杂改性。XRD及电解液浸泡实验表明,Al掺杂可以稳定梯度正极材料的层状结构并降低阳离子混排度,抑制正极材料在电解液中的溶解,从而提高材料的电化学性能。经沉淀法掺杂后正极材料在25℃下1 C循环100次容量保持率由92.5%提高到94.5%,55℃下1 C循环50次容量保持率由91.3%提高到95.8%。  相似文献   

18.
采用射频磁控溅射技术制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2薄膜正极,分别在200,300,400,500和600℃下进行退火处理,利用扫描电镜、等离子体发射光谱仪、拉曼光谱仪、X射线衍射仪和X射线光电子能谱仪等对不同温度下退火后的薄膜电极的形貌、结构和物相组成等进行分析,并测试其电化学性能。结果表明,500℃下退火后的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2薄膜正极放电容量相对较低,但表现出优异的循环稳定性和倍率性能,在50(μA·h)/(cm~2·μm)倍率下循环60圈后,仍保持初始放电容量(130.3(μA·h)/(cm~2·μm))的88.5%,经过电流密度分别为50,100,200,500和50μA/(cm~2·μm)的倍率循环,容量可以恢复到初始值,优异的循环稳定性和倍率性能是由于退火改善了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的结晶性,并伴随着离子导电性和电子导电性的提高,但在更高温度(600℃)下退火的电池初始放电容量降低,这是由于高温退火产生的不纯相(Ni~(3+)离子物质)导致的,Co~(2+)和Mn~(3+)离子的出现是电池容量衰减的主要原因。  相似文献   

19.
近几年,锂离子电池富锂材料xLi2MnO3·(1-x) LiMO2(M=Ni、Co、Mn等) 由于其高放电比容量、高电压、低廉的价格受到人们越来越多的关注.但是,富锂材料循环性能差、倍率性能低、首圈充放电效率低和电压降等问题是阻止富锂材料商业化的几个主要原因。采用液相法合成富锂材料Li[Li0.2Mn0.54Co0.13Ni0.13]O2,通过表面包覆一层ZrO2, 放电倍率1 C下循环100圈之后,2% ZrO2包覆量的富锂材料的放电比容量比未包覆的放电比容量多53.8 mAh/g,大大提高富锂材料的循环性能.   相似文献   

20.
介绍了一种利用固相法制备Mg~(2+)掺杂锂离子电池正极材料LiMg_(0.02)Mn_(1.98)O_4的方法。该方法简单有效地提高了锰酸锂材料的循环性能与倍率性能,所制备的正极材料性能优异,适用于大规模工业化生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号