首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用TA15钛合金板材,研究了在860~980℃,8.3×10-4~1.7×10-3s-1条件下进行的超塑拉伸性能。结果标明:随着变形温度的升高,延伸率先增加后降低;在940℃、应变速率为1.7×10-3s-1、垂直轧制方向获得最大延伸率为1370%。随着变形温度的升高和拉伸速度的降低,等轴α晶粒尺寸增大。变形温度为940℃时诱发次生α相的析出,少量的层片组织对提高延伸率具有一定的作用。  相似文献   

2.
采用热模拟试验机对铸态Ti-6Al-4Sn-8Zr-0.8Mo-1.5Nb-1W-0.25Si短时高温钛合金进行热模拟试验,研究了其高温变形行为。试验结果表明:该高温钛合金热变形对温度和变形速率敏感,随着应变速率降低和变形温度升高,真应力显著降低。利用高温压缩应力应变数据绘制了热加工图,分析结果显示:(α+β)相区的900~960℃、0.035~0.368 s-1和960~1 010℃、0.165~0.577 s-1;β相区的1 010~1 020℃、0.165~1 s-1为最适合加工的区域。经计算,(α+β)两相区的热变形激活能为316.229 kJ/mol,并构建了该相区内的本构方程。  相似文献   

3.
对BT25钛合金在温度为950~1 100 ℃,应变速率为0.001~10 s-1条件下的高温变形行为进行了研究,分析了热力学参数对流变应力和微观组织的影响,并以Arrhenius方程为基础,构建了本构方程,最后进行了验证.结果表明:BT25合金在相同温度和应变速率下变形,变形量越大,动态再结晶越充分并细化了晶粒.相同变形量,变形温度越低,应变速率越高,动态再结晶晶粒尺寸越细小;流变应力随应变速率的增加而增加,随变形温度的升高而减小;BT25合金在α+β两相区(950~1 010 ℃)Q=763.51 kJ/mol,β相区(1 040~1 100 ℃)Q=231.36 kJ/mol.   相似文献   

4.
钛合金具有比强度高、密度低、耐蚀性、抗氧化、抗蠕变性能好等特点,已经成为航空航天领域的首选材料。随着高温钛合金板材在航空、航天高温承力结构件等方面的推广应用,国内对高温钛合金板材的关注度也逐步提高。本文简要介绍了国内高温钛合金材料的发展历程,并综述了典型牌号的高温钛合金板材研究现状。  相似文献   

5.
该合金含有(wt%)5.2~6.0Al,0.4~1.0V,1.2~2.8Sn,3.2~5.6Zr,0.5~1.2Mo,0.5~1.4Cr,0.8~1.5Fe,0.1~0.15O,余为钛。压缩机和喷气式飞机发动机的转子,发电装置或各种气体涡轮机的材料有好的高温比抗断强度和韧性。因此可以不进行机加工就能制造出低成本的零件。例如 GT-9合金(5.70Al、0.5V、1.40Sn、3.86Zr、0.98Mo、1.29Cr、0.98Fe、0.12O、余为钛)(wt%)在电弧炉中于900℃熔炼、锻造、在大约85%压下量时进行热轧。在900℃、1h 加热,  相似文献   

6.
采用高温拉伸试验,得到TA9钛合金在800~920℃温度范围内和应变速率为0.001~0.125 s-1条件下的应力应变曲线,分析在拉应力条件下,变形温度、应变速率和流变应力三者之间的关系,构造了Arrhenius双曲正弦函数本构方程,并进行了应变修正,绘制出变形量为20%和50%时的热加工图,总结出不同变形条件下合金显微组织演变规律。结果表明:流变应力随变形温度的提高和应变速率的降低而降低,由本构方程计算出两相区变形激活能为569.453 kJ/mol,热加工图中的失稳区主要有四个区域,分别是在800~845℃和870~920℃时,应变速率在大于0.07 s-1和0.002~0.03 s-1处。此外,断裂位置显微组织中α相沿着合金变形的方向被拉长,α晶界变成锯齿状,这与动态回复过程中α向沿亚晶界破碎、分割和晶界突出有关。当变形温度一定时,等轴α晶粒尺寸随应变速率的提高而减小,当应变速率一定时,等轴α晶粒尺寸随温度的升高而变大。  相似文献   

7.
采用Gleeble3800热模拟试验机对SP700钛合金进行热压缩试验,研究合金在变形温度为800~880℃、应变速率为1~10 s–1、压缩变形量为30%和50%条件下的流变行为及显微组织演变.结果表明,随着变形温度升高和应变速率降低,SP700钛合金热压缩变形的峰值流变应力降低.合金在800℃压缩变形时,流变应力曲线呈明显的动态软化,其显微组织中α片层逐渐破碎球化,部分α片层发生动态再结晶.随变形温度升高,合金压缩真应力–应变曲线呈稳态流变状态.在相同变形温度下,随应变速率和压缩变形量增加,α片层球化程度增加.热变形过程中,平行于压缩轴的α片层在压应力作用下弯曲扭折,片层内取向差不连续存在,并于不连续处存在新α/α界面.垂直于压缩轴的α片层在压应力作用下界面发生起伏,片层内部存在累积取向差.在界面起伏处β相楔入α片层,最终导致α片层的破碎球化.  相似文献   

8.
片层组织TC17钛合金高温变形行为研究   总被引:1,自引:0,他引:1  
通过热压缩试验研究了具有初始片层组织的TC17钛合金在780~860℃和应变速率0.001~10 s-1范围内的热变形行为和组织演变。分析了该合金在两相区变形的应力-应变曲线特征,其流变应力本构关系可以用双曲正弦方程和Zener-Hollomon参数描述,得到TC17合金在两相区变形的平均激活能为488.86 kJ.mol-1。显微组织分析发现:TC17合金在两相区变形时组织演变的主要特征是片层组织球化;热变形参数严重影响片层组织球化过程的进行,加大变形量、降低应变速率以及提高变形温度可以提高片状组织的动态球化程度。  相似文献   

9.
研究了2种不同工艺对SP700钛合金薄板的超塑拉伸性能的影响,并测试了SP700钛合金薄板可达到的最大超塑性能.结果 表明:采用最大m值超塑变形拉伸试验法,在775℃可得到SP700钛合金薄板试样的最佳超塑性能,超塑性可以达到3000%以上.  相似文献   

10.
程亮  常辉  樊江昆  唐斌  寇宏超  李金山 《钢铁钒钛》2013,34(1):22-25,40
对新型近β钛合金Ti-7333进行等温压缩试验,并对合金的流变行为进行研究.研究结果表明:Ti-7333的流变应力对变形参数的变化十分敏感,随着温度的升高和应变速率的下降,流变应力显著减小;合金的变形以动态回复为主,动态再结晶为辅.基于Mecking和Bergstrom提出的合金热变形过程中的位错密度演变模型建立了Ti-7333合金的本构模型,准确地描述了合金热变形过程中的流变应力,并且模型中参数数量较少,便于应用.  相似文献   

11.
研究了一种700 MPa微合金高强钢。在热力模拟试验机上进行了试验钢的单道次压缩试验,通过其各种变形参数的研究,建立了试验钢的变形抗力数学模型和动态再结晶模型。试验结果显示:试验钢在变形温度为950℃,应变速率为0.1 s-1;变形温度为1 000℃,应变速率为0.1 s-1;变形温度为1 050℃,应变速率为0.1s-1或1 s-1;变形温度为1 100℃,应变速率为0.1 s-1、1 s-1或5 s-1这几种条件下会发生动态再结晶。  相似文献   

12.
钛合金热变形行为研究   总被引:1,自引:0,他引:1  
综述了国内外钛合金热变形行为的研究进展,分析了几种典型的α钛合金、近α钛合金、α+β钛合金及β钛合金的在不同的热变形条件下的流变应力的行为特征,软化机制,表观激活能及组织演变规律。介绍了氧、氢元素和不同的组织状态对钛合金热变形的影响。  相似文献   

13.
设计了新型高温钛合金BTi - 62421S舵面模拟件超塑成形模具,结合超塑成形与几种典型焊接技术,研究了激光焊、滚焊等焊接方法对超塑成形的影响,最终研制出钛合金舵面模拟件超塑成形零件.结果表明采用激光焊与滚焊工艺都能很好地保证两层钛合金板气密性要求,激光焊接工艺效率更高、表面质量更好,选择适当的激光焊接工艺参数可获得...  相似文献   

14.
通过恒应变压缩实验研究了锻态TC10钛合金的高温变形行为和组织演变规律,变形温度为800~920℃,应变速率为0.01~10 s~(-1),变形量为60%。研究结果表明:降低变形温度、提高应变速率,流变应力会在变形初期迅速增加,而显微组织没有明显变化,当流变应力达到最大值后随着动态再结晶的发生而逐渐降低。提高变形温度、降低应变速率,能够为动态再结晶提供能量,细化组织并降低流变应力。综合分析表明:在变形温度为840~900℃,应变速率为0.01~0.1 s~(-1)的参数范围内进行热变形可以获得性能优良的TC10钛合金产品。  相似文献   

15.
超塑成形/扩散连接(SPF/DB)技术为钛合金在航空航天领域的应用打开了一条通道,该技术的发展也对所需的钛合金超塑板提出了更高的要求。介绍了国内外在TC4钛合金超塑板、新型钛合金低温超塑板和新型短时高温钛合金超塑板方面的研究进展。指出,我国经过三十多年的持续技术攻关和应用经验积累,钛合金超塑板的生产技术水平基本与国际先进水平同步,尤其是自主研发的特种轧制技术,能够有效控制钛合金超塑性板材的晶粒度和各向异性,保证后续SPF/DB工艺的需要。最后对我国钛材研发企业提出了几点建议,指出了未来钛合金超塑板研究的工作重点。  相似文献   

16.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5.32×10^-4~2.08×10^-2 s^-1条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5.32×10^-4~3.33×10^-3 s^-1)条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8.31×10^-3 s^-1~2.08×10^-2 s^-1)条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5.32×10^-4 s^-1时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

17.
研究了真空环境中TA32钛合金在950℃,初始变形速率在5.32×10-4~2.08×10-2s-1条件下的超塑性变形行为。结果表明,不同应变速率条件下,板材的流变应力曲线特征和显微组织演变呈现显著不同。在应变速率较低条件下(5.32×10-4 ~3.33×10-3s-1),拉伸真应力-应变曲线呈传统超塑变形的稳态流动特征,变形后的板材中初生α相晶粒尺寸较大;在高应变速率(8.31×10-3 s-1~2.08×10-2 s-1)条件下,拉伸真应力-应变曲线中流变应力增大到峰值后快速单调递减直到断裂,变形后的板材中初生α相发生动态再结晶,晶粒尺寸与低应变速率条件拉伸的板材相比显著细化。在950℃下,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间,当应变速率为5.32×10-4s-1时,板材具有最佳的超塑性性能,拉伸延伸率可达519%。断裂区分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

18.
业稳态卢钛合金可以通过位错滑移形成孪晶及应力诱发马氏体相变来发生形变。当马氏体相变的温度低于室温时,β相可以被应力诱导转化为密排六方a’相或正交a”马氏体相,  相似文献   

19.
20.
正申请号:201410161161.9申请日:2014-04-20公开(公告)日:2016-03-23公开(公告)号:CN103934301B申请(专利权)人:西部钛业有限责任公司摘要:本发明提供了一种超塑成形用TC4钛合金板材的加工方法,包括以下步骤:一、将TC4钛合金板坯加热后进行第一轧制,得到第一半成品板坯;二、将第一半成品板坯加热后进行第二轧制,得到第二半成品板坯;三、进行β  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号