首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyadenylation at the 3' terminus has long been considered a specific feature of mRNA and a few other unstable RNA species. Here we show that stable RNAs in Escherichia coli can be polyadenylated as well. RNA molecules with poly(A) tails are the major products that accumulate for essentially all stable RNA precursors when RNA maturation is slowed because of the absence of processing exoribonucleases; poly(A) tails vary from one to seven residues in length. The polyadenylation process depends on the presence of poly(A) polymerase I. A stochastic competition between the exoribonucleases and poly(A) polymerase is proposed to explain the accumulation of polyadenylated RNAs. These data indicate that polyadenylation is not unique to mRNA, and its widespread occurrence suggests that it serves a more general function in RNA metabolism.  相似文献   

2.
DSEF-1 protein selectively binds to a G-rich auxiliary sequence element which influences the efficiency of processing of the SV40 late polyadenylation signal. We have obtained cDNA clones of DSEF-1 using sequence information from tryptic peptides isolated from DSEF-1 protein purified from HeLa cells. DSEF-1 protein contains three RNA-binding motifs and is a member of the hnRNP H family of RNA-binding proteins. Recombinant DSEF-1 protein stimulated the efficiency of cleavage and polyadenylation in an AAUAAA-dependent manner in in vitro reconstitution assays. DSEF-1 protein was shown to be able to interact with several poly(A) signals that lacked a G-rich binding site using a less stringent, low ionic strength gel band shift assay. Recombinant DSEF-1 protein specifically stimulated the processing of all of the poly(A) signals tested that contained a high affinity G-rich or low affinity binding site. DSEF-1 specifically increased the level of cross-linking of the 64 kDa protein of CstF to polyadenylation substrate RNAs. These observations suggest that DSEF-1 is an auxiliary factor that assists in the assembly of the general 3'-end processing factors onto the core elements of the polyadenylation signal.  相似文献   

3.
Previous work has implicated poly(A) polymerase I (PAP I), encoded by the pcnB gene, in the decay of a number of RNAs from Escherichia coli. We show here that PAP I does not promote the initiation of decay of the rpsT mRNA encoding ribosomal protein S20 in vivo; however, it does facilitate the degradation of highly folded degradative intermediates by polynucleotide phosphorylase. As expected, purified degradosomes, a multi-protein complex containing, among others, RNase E, PNPase, and RhlB, generate an authentic 147-residue RNase E cleavage product from the rpsT mRNA in vitro. However, degradosomes are unable to degrade the 147-residue fragment in the presence of ATP even when it is oligoadenylated. Rather, both continuous cycles of polyadenylation and PNPase activity are necessary and sufficient for the complete decay of the 147-residue fragment in a process which can be antagonized by the action of RNase II. Moreover, both ATP and a non-hydrolyzable analog, ATPgammaS, support the PAP I and PNPase-dependent degradation of the 147-residue intermediate implying that ATPase activity, such as that which may reside in RhlB, a putative RNA helicase, is not necessarily required. Alternatively, the rpsT mRNA can be degraded in vitro by a second 3'-decay pathway which is dependent on PAP I, PNPase and ATP alone. Our results demonstrate that a hierarchy of RNA secondary structures controls access to exonucleolytic attack on 3' termini. Moreover, decay of a model mRNA can be reconstituted in vitro by a small number of purified components in a process which is more dynamic and ATP-dependent than previously imagined.  相似文献   

4.
5.
The Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE) is a cis-acting RNA element located in the 3' untranslated region (UTR) of the viral genome. The HIV-1 and SIV Rev/RRE regulatory system can be replaced with MPMV CTE (Bray et al., 1994; Zolotukhin et al., 1994; Rizvi et al., 1996a); similarly, CTE function can also be replaced by the HIV or SIV Rev/RRE regulatory system (Rizvi et al., 1996b; Ernst et al., 1997). In addition, we have shown that in the context of the SIV genome, position is important for CTE function (Rizvi et al., 1996a). To determine the importance of position for CTE function in the context of the MPMV genome, MPMV molecular clones were generated by deleting CTE or removing it from the 3' UTR and placing it in the approximately 40 bp of intervening sequences between the pol termination codon and env initiation codon. A test of these molecular clones in a single round of replication assay revealed that deletion or displacement of CTE in the intervening sequences between pol and env completely abrogated virus replication. Western blot analysis of cell lysates and pelleted culture supernatants revealed negligible amounts of Pr78 Gag/Pol precursor and the processed p27(gag) when CTE was deleted or displaced. Slot blot analysis of fractionated RNAs revealed entrapment of the viral Gag/Pol mRNA in the nucleus with CTE deletion or displacement. Upon reinsertion of CTE in the original genomic position of clones with the deleted or displaced CTE, virus replication, Gag/Pol protein production, and nucleocytoplasmic transport of viral mRNA were restored to normal levels. Displacement of CTE to the 5' UTR immediately upstream of the Gag initiation codon also resulted in aberrant Gag/Pol protein production and nucleocytoplasmic transport of viral RNA. Reinsertion of CTE at the original genomic position of the clone with CTE displacement at the 5' UTR restored normal Gag/Pol protein production and RNA transport, demonstrating that the 3' terminal position of CTE is important for its function. To explore why the 3' terminal location of CTE is important, heterologous DNA sequences of increasing lengths were inserted between CTE and the polyadenylation (poly(A)) signal of the virus to augment the distance between the two cis-acting elements. Test of these constructs revealed that CTE function was progressively lost with incremental increase in distance between CTE and poly(A). To explore this relationship further, CTE was displaced to the env region approximately 2000 bp upstream of the poly(A) signal which abrogated CTE function. However, cloning of poly(A) signal to approximately 200 bp downstream of CTE in the env region (the natural distance between CTE and poly(A)) restored CTE function. Together, these results demonstrate that the close proximity of CTE to the poly(A) signal is important for CTE function, suggesting a functional interaction between CTE and the polyadenylation machinery.  相似文献   

6.
Alphaviruses are mosquito-transmitted RNA viruses that cause important diseases in both humans and livestock. Sindbis virus (SIN), the type species of the alphavirus genus, carries a 11.7-kb positive-sense RNA genome which is capped at its 5' end and polyadenylated at its 3' end. The 3' nontranslated region (3'NTR) of the SIN genome carries many AU-rich motifs, including a 19-nucleotide (nt) conserved element (3'CSE) and a poly(A) tail. This 3'CSE and the adjoining poly(A) tail are believed to regulate the synthesis of negative-sense RNA and genome replication in vivo. We have recently demonstrated that the SIN genome lacking the poly(A) tail was infectious and that de novo polyadenylation could occur in vivo (K. R. Hill, M. Hajjou, J. Hu, and R. Raju, J. Virol. 71:2693-2704, 1997). Here, we demonstrate that the 3'-terminal 29-nt region of the SIN genome carries a signal for possible cytoplasmic polyadenylation. To further investigate the polyadenylation signals within the 3'NTR, we generated a battery of mutant genomes with mutations in the 3'NTR and tested their ability to generate infectious virus and undergo 3' polyadenylation in vivo. Engineered SIN genomes with terminal deletions within the 19-nt 3'CSE were infectious and regained their poly(A) tail. Also, a SIN genome carrying the poly(A) tail but lacking a part or the entire 19-nt 3'CSE was also infectious. Sequence analysis of viruses generated from these engineered SIN genomes demonstrated the addition of a variety of AU-rich sequence motifs just adjacent to the poly(A) tail. The addition of AU-rich motifs to the mutant SIN genomes appears to require the presence of a significant portion of the 3'NTR. These results indicate the ability of alphavirus RNAs to undergo 3' repair and the existence of a pathway for the addition of AU-rich sequences and a poly(A) tail to their 3' end in the infected host cell. Most importantly, these results indicate the ability of alphavirus replication machinery to use a multitude of AU-rich RNA sequences abutted by a poly(A) motif as promoters for negative-sense RNA synthesis and genome replication in vivo. The possible roles of cytoplasmic polyadenylation machinery, terminal transferase-like enzymes, and the viral polymerase in the terminal repair processes are discussed.  相似文献   

7.
8.
9.
A redox-sensitive protein that binds to the 3' untranslated region (UTR) of manganese superoxide dismutase (MnSOD) RNA has been described previously [Fazzone, H., Wangner, A., and Clerch, L. B. (1993) J. Clin. Invest. 92, 1278-1281; Chung, D. J., and Clerch, L. B. (1997) Am. J. Physiol. 16, L714-L719]. In the present study, cross-competition gel retardation and RNase H assays were used to identify a 41-base region located 111 bases downstream of the stop codon as the 3' UTR cis element involved in protein binding. The base sequence of this region is approximately 75% conserved among the 3' UTRs of rat, mouse, cow, and human MnSOD mRNAs at approximately the same distance downstream of the stop codon. The role of this protein-binding region in RNA translation was assessed in an in vitro rabbit reticulocyte lysate system. Translation of MnSOD RNA from which the 3' UTR element was deleted decreased 60% compared with translation of MnSOD RNA containing the 3' UTR cis element. In the presence of a specific competitor oligoribonucleotide that inhibits MnSOD RNA protein-binding activity, translation of MnSOD RNA containing the 3' UTR was decreased by 65%. Thus, both the cis element and RNA protein-binding activity were required for more efficient translation of the MnSOD. An analysis of ribosomal profiles suggests the MnSOD RNA-binding protein participates in the formation of the translation initiation complex. When MnSOD RNA-binding activity was inhibited, initiation complex formation was decreased by 50%. From the data obtained in this study, we propose that the 3' UTR cis element of MnSOD through its interaction with MnSOD RNA-binding protein may function as a translational enhancer.  相似文献   

10.
There has been increased interest in bacterial polyadenylation with the recent demonstration that 3' poly(A) tails are involved in RNA degradation. Poly(A) polymerase I (PAP I) of Escherichia coli is a member of the nucleotidyltransferase (Ntr) family that includes the functionally related tRNA CCA-adding enzymes. Thirty members of the Ntr family were detected in a search of the current database of eubacterial genomic sequences. Gram-negative organisms from the beta and gamma subdivisions of the purple bacteria have two genes encoding putative Ntr proteins, and it was possible to predict their activities as either PAP or CCA adding by sequence comparisons with the E. coli homologues. Prediction of the functions of proteins encoded by the genes from more distantly related bacteria was not reliable. The Bacillus subtilis papS gene encodes a protein that was predicted to have PAP activity. We have overexpressed and characterized this protein, demonstrating that it is a tRNA nucleotidyltransferase. We suggest that the papS gene should be renamed cca, following the notation for its E. coli counterpart. The available evidence indicates that cca is the only gene encoding an Ntr protein, despite previous suggestions that B. subtilis has a PAP similar to E. coli PAP I. Thus, the activity involved in RNA 3' polyadenylation in the gram-positive bacteria apparently resides in an enzyme distinct from its counterpart in gram-negative bacteria.  相似文献   

11.
12.
13.
14.
A number of small RNA molecules that are high affinity ligands for the 46-kDa form of human 2'-5' oligoadenylate synthetase have been identified by the SELEX method. Surface plasmon resonance analysis indicates that these RNAs bind to the enzyme with dissociation constants in the nanomolar range. Competition experiments indicate that the binding site for the small RNAs on the 2'-5' oligoadenylate synthetase molecule at least partially overlaps that for the synthetic double-stranded RNA, poly(I).poly(C). Several of the RNAs function as potent activators of 2'-5' oligoadenylate synthetase in vitro, although there is no correlation between binding affinity and ability to activate. The RNA aptamers having the strongest activation potential appear to have few base-paired regions. This suggests that 2'-5' oligoadenylate synthetase, which has previously been believed to be activated only by double-stranded RNA, can also be activated by RNA ligands with little secondary structure. Since 2'-5' oligoadenylate synthetase possesses no homology to other known RNA-binding proteins, the development of small specific ligands by SELEX should facilitate studies of RNA-protein interactions and may reveal novel features of the structure-function relationships involving this enzyme.  相似文献   

15.
The hok/sok system of plasmid R1, which mediates plasmid stabilization by the killing of plasmid-free cells, codes for two RNA species, Sok antisense RNA and hok mRNA. Sok RNA, which is unstable, inhibits translation of the stable hok mRNA. The 64nt Sok RNA folds into a single stem-loop domain with an 11 nt unstructured 5' domain. The initial recognition reaction between Sok RNA and hok mRNA takes place between the 5' domain and the complementary region in hok mRNA. In this communication we examine the metabolism of Sok antisense RNA. We find that RNase E cleaves the RNA 6nt from its 5' end and that this cleavage initiates Sok RNA decay. The RNase E cleavage occurs in the part of Sok RNA that is responsible for the initial recognition of the target loop in hok mRNA and thus leads to functional inactivation of the antisense. The major RNase E cleavage product (denoted pSok-6) is rapidly degraded by polynucleotide phosphorylase (PNPase). Thus, the RNase E cleavage tags pSok-6 for further rapid degradation by PNPase from its 3' end. We also show that Sok RNA is polyadenylated by poly(A) polymerase I (PAP I), and that the poly(A)-tailing is prerequisite for the rapid 3'-exonucleolytic degradation by PNPase.  相似文献   

16.
During oocyte maturation and early development, mRNAs receive poly(A) in the cytoplasm at distinct times relative to one another and to the cell cycle. These cytoplasmic polyadenylation reactions do not occur during oogenesis, but begin during oocyte maturation and continue throughout early development. In this report, we focus on the link between cytoplasmic polyadenylation and control of the cell cycle during meiotic maturation. Activation of maturation promoting factor, a complex of CDK1 and cyclin, is required for maturation and dependent on c-mos protein kinase. We demonstrate here that two classes of polyadenylation exist during oocyte maturation, defined by their dependence of c-mos and CDK1 protein kinases. Polyadenylation of the first class of mRNAs (class I) is independent of c-mos and CDK1 kinase activities, whereas polyadenylation of the second class (class II) requires both of these activities. Class I polyadenylation, through its effects on c-mos mRNA, is required for class II polyadenylation. cis-acting elements responsible for this distinction reside in the 3'-untranslated region, upstream of the polyadenylation signal AAUAAA. Cytoplasmic polyadenylation elements (CPEs) are sufficient to specify class I polyadenylation, and subtle changes in the CPE can substantially, though not entirely, shift an RNA from class I to class II. Activation of class I polyadenylation events is independent of hyperphosphorylation of CPE-binding protein or poly(A) polymerase, and requires cellular protein synthesis. The two classes of polyadenylation and of mRNA define a dependent pathway, in which polyadenylation of certain mRNAs requires the prior polyadenylation of another. We propose that this provides one method of regulating the temporal order of polyadenylation events, and links polyadenylation to the control of the meiotic cell cycle.  相似文献   

17.
18.
19.
The perinucleolar compartment (PNC) is a unique nuclear structure preferentially localized at the periphery of the nucleolus. Several small RNAs transcribed by RNA polymerase III (e.g., the Y RNAs, MRP RNA, and RNase P H1 RNA) and the polypyrimidine tract binding protein (PTB; hnRNP I) have thus far been identified in the PNC (Ghetti, A., S. PinolRoma, W.M. Michael, C. Morandi, and G. Dreyfuss. 1992. Nucleic Acids Res. 20:3671-3678; Matera, A.G., M.R. Frey, K. Margelot, and S.L. Wolin. 1995. J. Cell Biol. 129:1181-1193; Lee, B., A.G. Matera, D.C. Ward, and J. Craft. 1996. Proc. Natl. Acad. Sci. USA. 93: 11471-11476). In this report, we have further characterized this structure in both fixed and living cells. Detection of the PNC in a large number of human cancer and normal cells showed that PNCs are much more prevalent in cancer cells. Analysis through the cell cycle using immunolabeling with a monoclonal antibody, SH54, specifically recognizing PTB, demonstrated that the PNC dissociates at the beginning of mitosis and reforms at late telophase in the daughter nuclei. To visualize the PNC in living cells, a fusion protein between PTB and green fluorescent protein (GFP) was generated. Time lapse studies revealed that the size and shape of the PNC is dynamic over time. In addition, electron microscopic examination in optimally fixed cells revealed that the PNC is composed of multiple strands, each measuring approximately 80-180 nm diam. Some of the strands are in direct contact with the surface of the nucleolus. Furthermore, analysis of the sequence requirement for targeting PTB to the PNC using a series of deletion mutants of the GFP-PTB fusion protein showed that at least three RRMs at either the COOH or NH2 terminus are required for the fusion protein to be targeted to the PNC. This finding suggests that RNA binding may be necessary for PTB to be localized in the PNC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号