首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
采用共沉淀法制备了Eu~(3+)掺杂Na_(0.45)La_(3.16)W_5O_(20)红色荧光粉,利用XRD、荧光光谱等方法对荧光粉的组成结构及发光性能进行了表征。结果表明,Na_(0.45)La_(3.16)W_5O_(20):Eu~(3+)荧光粉在612nm波长光监测下的激发光谱是由一宽带和系列锐峰组成,其最强激发峰位于蓝光465nm处,这与目前被广泛使用的蓝光LED芯片的输出波长以及商业化生产的460nm光源相匹配。该荧光粉可以被465nm蓝光有效激发,得到614nm处Eu~(3+)非常强的5D0→7F2电偶极跃迁发射峰,是一种能够较好应用在近紫外激发的白光LED用红色荧光粉材料。  相似文献   

2.
采用低温燃烧法分别制备了Y_2O_3:Eu~(3+)和钐(Sm~(3+))、铈(Ce~(3+))掺杂的Y_2O_3:Eu~(3+)红色荧光粉,并研究了反应温度及掺杂量对荧光粉性能的影响。使用激光粒度仪、X射线粉末衍射仪和荧光光谱仪,对样品的物相、粒度及发光特性进行了表征和分析。结果表明,Y_2O_3:Eu~(3+)的最佳反应温度为200℃,Sm~(3+)和Ce~(3+)掺杂Y_2O_3:Eu~(3+)的粒径分别分布在396~615 nm和531~955 nm,Sm~(3+)和Ce~(3+)的掺杂均能显著增强Y_2O_3:Eu~(3+)红色荧光粉的发光性能。  相似文献   

3.
以碳酸锂、氧化铝、二氧化硅、Eu_2O_3为原料,采用传统高温固相法在1150℃制备系列Eu~(3+)掺杂LiAlSiO_4红色荧光粉Li_(1–x)AlSiO_(4+x):xEu~(3+)(x=0.05~0.18)。利用XRD、SEM和光致发光光谱分别对其晶体结构,粉体形貌和发光性能进行了表征。考察了Eu~(3+)掺杂量对所制红色荧光粉发光强度、色温、色调的影响。结果表明:Eu~(3+)掺杂摩尔分数低于15.0%时,样品为单一基质;样品可以被近紫外350~420 nm波段高效激发,最强激发发射峰位于394 nm。发射光谱呈现出Eu~(3+)的特征峰,谱带峰值在593、616 nm处,分别对应于Eu~(3+)的~5D_0→~7F_1、~5D_0→~7F_2特征跃迁。最强发射对应Eu~(3+)掺杂摩尔分数为12.0%,浓度猝灭主要是因为四极-四极(q-q)相互作用,CIE坐标为(0.6464,0.3526),可应用于近紫外芯片激发LED用红色荧光粉。  相似文献   

4.
采用固相法制备了白光LED红色荧光粉Ca_(0.71)WO_4:Sm_(0.04)~(3+)Li_(0.250)~+和Ca_(0.5-y)WO_4:Eu_(0.25)~(3+),Li_(0.25)~+,Sm_y~(3+)(y=0.00,0.02,0.04,0.06),通过X射线衍射(XRD)、荧光分光光度计以及稳态/瞬态荧光光谱仪研究了荧光粉样品的物相、Sm~(3+)的掺杂量对荧光粉发光性能以及荧光寿命的影响。XRD分析表明,合成的样品均为白钨矿结构。荧光光谱表明,所合成的系列荧光粉均可以被近紫外光(393 nm)和蓝光(464 nm)有效激发,其发射主峰位于615 nm处,归属于Eu~(3+)的~5D_0→~7F_2跃迁。发光衰减曲线表明,Sm~(3+)的掺杂对荧光粉Ca_(0.5)WO_4:Eu_(0.25)~(3+),Li_(0.25)~+荧光寿命没有影响。实验结果表明,在系列Ca_(0.5-y)WO_4:Eu_(0.25)~(3+),Li_(0.25)~+,Sm~(3+)荧光粉中Sm~(3+)的最佳掺杂量为4%(摩尔分数)。  相似文献   

5.
通过高温固相法制备了系列Ba_2ZnW_(1-x)Mo_xO_6:Eu~(3+),Li~+红色荧光粉,研究了Mo~(6+)离子掺杂对样品的晶体结构以及荧光性能的影响。结果表明:部分Mo~(6+)离子取代W~(6+)离子后,样品的激发波长发生红移,最大激发波长从316 nm转移到373 nm,使得样品能有效地被近紫外光(350~420 nm)激发。Ba_2ZnW_(0.6)Mo_(0.4)O_6:Eu~(3+),Li~+在373 nm波长的激发下,所得的荧光强度最强。Eu~(3+)离子的特征跃迁仍以~5D_0→~7F_1(598 nm)跃迁为主,但~5D_0→~7F_2(615 nm)跃迁得以加强。通过其发射光谱计算所得色坐标为(0.6385,0.3611),接近标准红色色坐标。Ba_2ZnW_(0.6)Mo_(0.4)O_6:Eu~(3+)Li~+作为红色荧光粉在被近紫外激发的白光LED中具有很好的应用前景。  相似文献   

6.
采用水热法结合高温烧结处理制备Bi~(3+)掺杂Y_2O_3∶Eu~(3+)纳米荧光粉,并考察了掺杂Bi~(3+)对Y_2O_3∶Eu~(3+)荧光粉结构、紫外可见光吸收和发光性能的影响。X射线粉末衍射测试表明,Y_2O_3∶Eu~(3+)掺杂Bi~(3+)(摩尔分数3%)后保持纯立方相结构,纳米颗粒的平均粒径约为16.8nm。通过激发和发光光谱测试,讨论了Bi~(3+)对Eu~(3+)的敏化作用,发现Bi~(3+)离子能促进Y_2O_3∶Eu~(3+)于300~400nm的近紫外光吸收,再以能量转移的方式传给Eu~(3+)。因此,利用Bi~(3+)电荷迁移带的近紫外吸收,是实现近紫外光有效激发Y_2O_3∶Eu~(3+)荧光粉的一种重要途径。  相似文献   

7.
用高温固相法合成了Ba_(2-X)b_(10)O_(17):x Eu~(3+)(x=0.04,0.08,0.12,0.16,0.20,0.24,0.28)红色荧光粉,并对此荧光粉的结构及发光特性进行了研究。结果表明,样品用λ_(ex)=406 nm激发时,在λ=702 nm处得到发光光谱,随着Eu~(3+)掺杂浓度的增大,样品的发光性能先增强后减弱。样品在x=0.20处发光性能最好,x0.20时,随着Eu~(3+)掺杂浓度的增大,样品发光性能增强;x0.20时,样品发生浓度淬灭,发光性能减弱。说明Eu~(3+)的掺杂浓度在Ba_(2-X)b_(10)O_(17):x Eu~(3+)红色荧光粉的发光性能中发挥重要的作用。  相似文献   

8.
采用微乳液法合成了Y_2SiO_5∶Eu~(3+)系列荧光粉。利用XRD、扫描电镜(SEM)、光电子能谱(EDS)、荧光光谱、色坐标等研究了所制备荧光粉的结构、形貌和发光性能。光电子能谱数据验证了合成样品的离子掺杂量。荧光光谱测试表明,Y_2SiO_5∶Eu~(3+)监测光谱呈现200nm~300nm的宽带吸收峰和Eu3+的系列吸收峰。在253nm紫外光激发下,Y_2SiO_5∶Eu~(3+)材料的发射光谱为一个多峰谱,主峰分别为5D0→7F1(591nm)、5D0→7F2(616nm)的发光峰。当Eu3+掺杂物质的量大于24%时,出现了浓度猝灭现象。通过色坐标图可知,当Eu3+掺杂量为24%时,荧光粉的色坐标(0.503,0.366)与标准的红光色坐标接近,表明Y_2SiO_5∶Eu~(3+)是很好的近紫外光激发下的红色荧光粉。  相似文献   

9.
采用水热法合成了YVO_4:Eu~(3+)红色荧光粉。通过X射线粉末衍射(XRD)、扫描电镜(SEM)以及荧光光谱(PL)对荧光粉的晶体结构、形貌和发光性能进行表征。结果表明,在水热条件下合成了一系列四方锆石结构的Y_(1-x)Eu_xVO_4纳米晶,一次性粒径约为7nm,组装成球形形貌、分散性好、尺寸均一的颗粒,其平均粒径约为80nm。在316nm波长激发下,YVO_4:Eu~(3+)荧光粉最强发光峰位于619nm处,对应于Eu~(3+)的~5 D_0→~7F_2电偶极跃迁,且Eu~(3+)最佳摩尔分数为11%。  相似文献   

10.
为了提高Na_2CaSiO_4:Eu~(3+)荧光粉的发光强度,采用高温固相法合成系列Eu~(3+)、Li~+掺杂Na_2CaSiO_4红色荧光粉。通过X射线粉末衍射和荧光分析,研究荧光粉的结构和发光性能。考察了Eu~(3+)、Li~+掺杂浓度对荧光粉发光性能的影响。结果表明,掺杂了Eu~(3+)、Li~+后Na_2CaSiO_4仍为立方晶系结构,但掺杂后晶胞参数发生了变化,说明Eu~(3+)、Li~+已经进入晶格中。根据离子电负性标度,Li~+(1.009)与Na~+(1.024)电负性相近,Eu~(3+)(1.433)与Ca~(2+)(1.160)电负性相近,掺杂Li~+会优先取代Na~+,Eu~(3+)会优先取代Ca~(2+)。荧光粉随Eu~(3+)、Li~+掺杂浓度的增加,发光强度逐渐增大。当Eu~(3+)掺杂量为0.16时,荧光粉Na_2CaSiO_4:Eu~(3+)的发光达到最大值。Li~+的掺杂对Na_2CaSiO_4:Eu~(3+)荧光粉具有增敏作用。当Li~+掺杂量为0.12时,发射光的强度是掺杂前的1.61倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号