首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
演马庄矿开采的二1煤层为单一厚煤层,透气性低,瓦斯含量高,瓦斯涌出量大。以27151工作面瓦斯治理为例,通过顶板岩巷穿层钻孔和顺层钻孔预抽区段和条带煤层瓦斯、回采工作面综合治理瓦斯、瓦斯抽采系统优化,并配套水力冲孔、水力压裂和深孔预裂爆破等卸压增透措施,全方位、多层次、综合化的瓦斯治理模式,使得控制区域应力得到消除、煤层透气性系数大幅度提高,瓦斯抽放量有大幅度提高,能够有效缩短抽采达标需要的时间,保证了采煤工作面在回采过程中的安全生产。  相似文献   

2.
《煤炭技术》2015,(7):185-187
针对新安煤矿典型的三软煤层具有低透气性、坚固性系数小、松软破碎的特性,且瓦斯抽采钻孔塌孔快、抽放效果差的特点,研究了适合新安煤矿突出煤层的水力冲孔工艺,重点分析了二次扩孔改变岩层孔径的情况下,利用高压水射流在煤体中运移规律,改变应力场,增加冲孔出煤量,改善水力冲孔效果。实验结果表明:执行二次扩孔水力化瓦斯治理措施,利用底板水力冲孔的卸压特征,有效地增加冲出煤量,防止憋孔、堵孔,从而快速消突,提高巷道掘进速度。  相似文献   

3.
新义煤矿可栗煤层为二1煤,该煤层松软破碎、透气性差,属全层构造软煤,具有突出危险性.煤与瓦斯突出和瓦斯超限问题严重制约着矿井安全生产.瓦斯抽采是防治煤与瓦斯突出的主要方法,新义煤矿根据先区域后局部的原则,采取了水力冲孔、水力压裂等一系列瓦斯综合治理措施,保证了矿井安全生产.  相似文献   

4.
针对高瓦斯矿井瓦斯治理过程中的重点和难点,在山西沈家峁煤业公司10102综采放顶工作面,通过分析采煤工作面瓦斯来源,提出了本煤层预抽、边采边抽、高位钻孔抽放、通风系统调整布置、采面风量分配等综合瓦斯治理技术借施,取得了显著的效果,解决了工作面瓦斯超限问题,使工作面顺利安全地进行开采。  相似文献   

5.
通过对水力冲孔和水力压裂技术的分析,集成2种水力化措施的优点,研究了冲压一体化卸压增透技术原理,介绍了技术的适用条件,并进行了现场工业性试验。现场工业性试验结果表明:冲压一体化卸压增透技术能够有效的提高钻孔瓦斯抽采浓度和抽采纯量,进而缩短煤层瓦斯抽采达标时间,能够为煤矿安全高效生产提供重要的技术支撑作用。  相似文献   

6.
陈长春 《煤矿安全》2012,43(8):57-59
随着开采深度的加大,高瓦斯矿井采煤工作面瓦斯涌出量会越来越大,鹤煤集团三矿开展了高位瓦斯抽放巷治理瓦斯技术研究,配套大管径抽采,解决了单一低透煤层瓦斯超限问题,实现了综放工作面的高产高效生产。  相似文献   

7.
大采长综放面瓦斯治理优化模拟实验   总被引:3,自引:0,他引:3  
针对大采长综放面瓦斯含量不断超限问题,以相似理论为基础,研制了瓦斯综合治理优化实验系统,首次提出了双尾巷新方案.对单尾巷、双尾巷在不同位置和不同进风量等实验条件下进行了实验,考察了回风流和内错尾巷的瓦斯含量变化情况.实验表明:大采长综放面在本煤层不采取瓦斯预抽放前提下,仅采用单尾巷和增加风量的措施无法解决瓦斯超限问题;如果采用双尾巷,总风量仅增加15%左右即可解决瓦斯超限,并从安全性和经济性两个方面确定其最佳布置位置分别为距回风巷35-65 m和130 m.  相似文献   

8.
9.
水力冲孔增透瓦斯抽采技术研究   总被引:2,自引:4,他引:2  
李鹏 《煤炭技术》2015,34(5):142-144
阐述了水力冲孔措施的消突机理,着重解释了水力冲孔钻孔内割缝对煤层巷道地应力、瓦斯压力的影响以及对煤体透气性的影响,同时结合现场情况,对普通瓦斯抽采效果和采用水力冲孔之后的瓦斯抽采效果进行对比,说明水力冲孔增透瓦斯抽采效果,对矿上减少抽采时间起到作用。  相似文献   

10.
瓦斯抽采效果是保障高瓦斯工作面安全生产的前提。为了降低高瓦斯工作面前方煤体的瓦斯含量,防止采空区瓦斯涌入工作面造成瓦斯超标,本文分析了采用水力压裂增加煤层透气性,形成相互交织的瓦斯抽放通道,通过本煤层抽放钻孔提前预抽煤层瓦斯,并通过高、中位钻孔和穿透钻孔抽放采空区瓦斯的工作面瓦斯综合抽采技术。采用该技术可有效降低工作面前方煤体、采空区和上隅角的瓦斯含量,保障工作面安全回采。  相似文献   

11.
为了提高煤层的透气性,改善瓦斯抽采效果,许多煤矿对水力压裂技术进行了研究和应用实践。介绍了水力压裂技术原理及工艺,分析了该技术的煤体增透、改变煤体强度、平衡地应力等多重效应。通过实施水力压裂技术,平煤十矿单孔瓦斯抽采时间由原来的7~9d延长到80多d,单孔瓦斯抽采量最大提高120多倍;神火集团梁北矿"三软"煤层单孔瓦斯抽采浓度由4.4%提高到95.0%,瓦斯抽采总量由237.9m3/d提高到1404.4m3/d;贵州六枝工矿2372机巷、1470中巷实施10次水力压裂后,瓦斯抽采时间大幅延长,抽采效率明显提高,消突效果达到预期目标。  相似文献   

12.
为解决主焦煤矿21141回采工作面瓦斯超限问题,针对本煤层抽放中存在的钻孔工程量少、瓦斯涌出量较大、抽放率低等问题,分析了瓦斯涌出的主要来源,确定采用分源抽放技术抽放瓦斯,即在采取继续打本煤层顺层平行钻孔的同时,改进本煤层封孔工艺,使用YFF-9压风封孔器,同时结合高位钻孔抽放技术。结果表明:实施分源抽放后,工作面瓦斯抽放量一般在7.8m3/m in以上,回风流中瓦斯体积分数降至0.4%左右,上隅角瓦斯体积分数可降低至0.4%~0.9%,瓦斯超限次数显著减少,采面瓦斯抽放率达到62.3%,从而有效解决了该工作面瓦斯超限问题。  相似文献   

13.
针对高瓦斯低透气性煤层瓦斯抽采钻孔施工量大、效率低等问题,研究了水力压裂技术的破煤理论及高压水对煤层的卸压增透理论,提出水力压裂强化抽采瓦斯的措施,以岩土工程数值模拟软件FLAC3D对煤层进行水力压裂数值模拟,得到煤层水力压裂过程中裂纹扩展规律,确定了水力压裂现场试验的工艺参数、压裂装备及抽采系统,完成封孔及压裂试验。  相似文献   

14.
水力压裂增透技术在高瓦斯低透气性煤层的试验研究   总被引:1,自引:1,他引:1  
以谢一矿C13煤层作为试验地点,详细阐述了水力压裂技术的基本原理、工艺流程、压裂参数的设置,并分析了水力压裂过程中煤体内部裂隙变化规律。压裂后有效影响半径达25 m,煤层透气性系数增加了42.26倍,瓦斯预抽纯量为原始煤体的4.95倍,煤层预抽达标时间缩短了42%。  相似文献   

15.
低透气性煤层水力压裂增透技术应用   总被引:4,自引:0,他引:4       下载免费PDF全文
 针对大兴煤矿煤层透气性差、瓦斯抽采效率低、钻孔施工量大等问题,提出了水力压裂增透技术。研究了水力压裂增透机理,分析了水力压裂提高煤层透气性的过程。结合理论研究与现场经验,进行了高压钻孔密封,确定了工艺参数,完成了现场实施。应用效果证明:实施水力压裂后,水力压裂孔及影响区域内瓦斯抽采孔保持了较高的抽采水平,相对于普通抽采孔瓦斯抽采量提高了7.2倍,水力压裂影响区域内煤层透气性系数提高了79~272倍。  相似文献   

16.
水力压裂技术是提高低透气性煤层瓦斯抽采效果的一种有效的增透措施。针对煤矿井下低透气性煤层瓦斯抽采浓度低、衰减系数大、抽采时间长且钻孔施工量大等问题,结合现场实际情况,确定压裂所需的仪器设备和工艺参数后,在工作面回风巷实施煤层压裂增透。根据压裂前后的瓦斯抽采参数跟踪记录,两者对比结果表明:对煤层进行压裂增透后,钻孔的最大瓦斯抽采流量和浓度最大可以提高3.65和4.42倍,煤层透气性显著提高,达到了强化瓦斯抽采的目的。  相似文献   

17.
水力割缝技术在提高瓦斯抽采效果中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
 为了解决我国矿井在低透气性煤层瓦斯抽采治理中遇到的瓶颈,基于近年来水力割缝技术在矿井石门揭煤、底板巷消除地应力方面取得的发展,探讨性的开展了水力割缝技术在本煤层强化瓦斯抽采方面的研究工作。提出了用水力割缝技术扩大钻孔的直接影响范围的思路,研究了水力割缝技术对扰动煤体的体积、表面积、单孔瓦斯抽采量、钻孔影响半径等参数,对比分析了水力割缝技术和普通钻孔抽采技术的数据,结果表明水力割缝技术扰动煤体体积可提高6~16倍,影响煤体表面积可提高5.3~8.8倍,单孔抽采流量可提高2.0~2.5倍。同时水力割缝技术可增大单孔有效影响半径,在一定程度上可减少施工工程量。  相似文献   

18.
为了考察水力压裂卸压增透强化抽放快速消突的效果,以义马煤业集团新义矿11041高抽巷为试验点,通过考察水力压裂前后瓦斯抽放浓度变化以及注水压力、注水时间和注水量的关系,得出水力压裂技术提高抽放浓度和抽放量的效果明显。试验结果表明:单孔最高抽放浓度为53.2%,非压裂区的单孔抽放浓度最高为6.5%,压裂区的单孔最高抽放浓度是非压裂区单孔最高抽放浓度的8倍。另外,通过对21个抽放孔丽斯浓度进行的统计发现,21个孔前10d平均浓度为18.94%,是非压裂区的6倍。  相似文献   

19.
针对汪家寨煤矿瓦斯难抽采、防突效果检验超标、掘进速度缓慢等问题,在分析井下水力压裂技术的原理及设备情况的基础上,试验并研究了X41105工作面井下水力压裂技术措施。结合现场试验情况,确定出各种施工参数:封孔长度、压裂时间、压裂压力等,并对瓦斯抽采、消突效果,以及经济效益等指标进行了考察分析,结果表明,井下水力压裂措施具有快速消除煤与瓦斯突出危险性、提高瓦斯抽采率、经济效益显著的综合效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号