首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Research to date has suggested that access to forage before weaning can limit rumen development in calves, but no research has yet addressed the role of forage for calves fed higher quantities of milk. This study compared performance and rumen development of calves provided high volumes (equivalent to approximately 20% of calf birth weight) of milk with and without access to hay. At d 3 of age, individually housed calves were randomly assigned to treatment (either ad libitum access to chopped grass hay or no forage; n = 15 calves per treatment, 10 heifers, and 5 bulls). All calves were provided ad libitum access to water and starter throughout the study. All calves were offered 8 L of milk/d from a nipple bottle from d 3 to 35, 4 L/d from d 36 to 53, and 2 L/d until weaning at d 56. Solid feed intake and growth parameters were monitored from d 3 to 70. At d 70, males from both treatments were slaughtered to measure rumen development parameters. Overall dry matter (DM) intake from solid feed did not differ between treatments before wk 5. However, during wk 6 to 10, calves fed forage consumed more total DM (starter plus hay) than did calves fed no forage. Hip and wither height, heart girth, and body barrel at d 3, 56, and 70 did not differ between treatments. Reticulorumen weight was heavier in calves fed hay versus those fed only starter (12.77 ± 1.29 vs. 7.99 ± 0.69 kg with digesta; 1.89 ± 0.05 vs.1.60 ± 0.09 kg without digesta). Body weight without digesta was similar in calves fed forage or no forage. Mean rumen pH was higher in calves fed hay compared with those fed no forage (5.49 ± 0.08 vs. 5.06 ± 0.04). In conclusion, provision of chopped hay to calves fed high volumes of milk can promote solid feed DM intake and rumen development without affecting BW gain.  相似文献   

2.
Our objectives were to determine the effect of starter crude protein (CP) content on growth of Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (64 female, 25 male) were assigned to 3 treatments in a randomized block design: 1) conventional milk replacer (20% CP, 20% fat) plus conventional starter [19.6% CP, dry matter (DM) basis], 2) enhanced milk replacer (28.5% CP, 15% fat) plus conventional starter, and 3) enhanced milk replacer plus high-CP starter (25.5% CP, DM basis). Calves began treatments (n=29, 31, and 29 for treatments 1 to 3) at 3 d of age. Conventional milk replacer (12.5% solids) was fed at 1.25% of birth body weight (BW) as DM daily in 2 feedings from wk 1 to 5 and at 0.625% of birth BW once daily during wk 6. Enhanced milk replacer (15% solids) was fed at 1.5% of BW as DM during wk 1 and 2% of BW as DM during wk 2 to 5, divided into 2 daily feedings. During wk 6, enhanced milk replacer was fed at 1% of BW as DM once daily. Calves were weaned at d 42. Starter was available for ad libitum intake starting on d 3. Starter intake was greater for calves fed conventional milk replacer. For calves fed enhanced milk replacer, starter intake tended to be greater for calves fed enhanced starter. During the weaning period, enhanced starter promoted greater starter DM intake than the conventional starter. Over the 10-wk study, the average daily gain of BW (0.64, 0.74, and 0.80 kg/d) was greater for calves fed enhanced milk replacer with either starter and, for calves fed enhanced milk replacer, tended to be greater for calves fed high-CP starter. Rates of change in withers height, body length, and heart girth were greater for calves fed enhanced milk replacer but did not differ between starter CP concentrations. The postweaning BW for enhanced milk replacer treatments was greater for calves receiving the enhanced starter at wk 8 (73.7, 81.3, and 85.8 kg) and wk 10 (88.0, 94.9, and 99.9 kg). Starter CP content did not affect height, length, or heart girth within enhanced milk replacer treatments. Regression analysis showed that gain of BW during the first week postweaning (wk 7) increased with greater 3-d mean starter intake in the week before weaning. Starter with 25.5% CP (DM basis) provided modest benefits in starter intake (particularly around weaning) and growth for dairy calves in an enhanced early nutrition program compared with a conventional starter (19.6% CP).  相似文献   

3.
Our objectives were to determine the effect of starter crude protein (CP) content on body composition of male Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (n = 45) were purchased on the day of birth and assigned to a randomized block design. Eight calves were harvested at baseline and remaining calves were divided among the following 3 dietary treatments: (1) low rate of milk replacer [LMR; 20.6% CP, 21.7% fat; 1.25% of body weight (BW) as dry matter (DM)] plus conventional starter (CCS; 21.5% CP, DM basis); n = 11 calves; (2) high rate of milk replacer (HMR; 29.1% CP, 17.3% fat; 1.5% of BW as DM for wk 1, 2% of BW as DM wk 2–5, 1% of BW as DM wk 6) plus conventional starter; n = 12 calves; and (3) enhanced milk replacer (HMR) plus high-CP starter (HCS; 26% CP, DM basis); n = 14 calves. A subset of calves (n = 8) was harvested on d 2 to provide baseline data. Calves began treatments on d 2 or 3 of age. Calves were weaned at d 42. Starter was available ad libitum. Calves from each treatment were harvested at 5 (n = 18) and 10 (n = 19) wk of age and divided into 4 fractions: carcass; viscera; blood; and head, hide, feet, and tail. Fractions were analyzed for energy, CP, lipid, and ash. Average weekly starter intake did not differ between enhanced treatments. Gain of BW was greater for calves fed HMR than for LMR, but was unaffected by starter CP. Carcass weights at 5 wk were greater for HMR but did not differ between starter CP content. At 10 wk, carcass weights were heavier for HMR and had a greater percentage of empty BW for HMR + CCS than for HMR + HCS. At 10 wk, the weights of reticulorumen and liver were greater for calves fed HMR + HCS than for those fed HMR + CCS. At 5 wk, empty BW gain for HMR contained more water and less fat and ash than in calves fed LMR. At 10 wk, empty BW gain for calves fed HMR + HCS contained a greater percentage of water and less fat than for calves fed HMR + CCS. Plasma β-hydroxybutyrate was greater after weaning for calves fed HMR + HCS than for those fed HMR + CCS. After weaning, calves fed HMR had greater plasma total protein concentration than those fed LMR, and total protein was greater for calves fed HMR + HCS than those fed HMR + CCS. Plasma urea N was greater for calves fed HMR treatments, and postweaning was greater for calves fed HMR + HCS. A high-CP starter had minimal effect on empty BW gain before weaning, but after weaning it tended to increase mass of reticulorumen and liver.  相似文献   

4.
《Journal of dairy science》2022,105(3):2326-2342
Concentrate-rich starter feeds are commonly fed to dairy calves to stimulate early solid feed intake and growth performance; yet, starter feeds lacking in forage fiber may jeopardize gut development. This research primarily aimed to test a complete or partial replacement of concentrates with hay of different qualities in the starter feed on nutrient intake, growth performance, apparent total-tract digestibility (ATTD) of nutrients, and blood metabolites in dairy calves. Immediately after birth, 40 Holstein Friesian calves were randomly allocated to 1 of 4 starter diets, which differed in hay quality and concentrate inclusion [MQH = 100% medium-quality hay, 9.4 MJ of metabolizable energy (ME), 149 g of crude protein (CP), 522 g of neutral detergent fiber (NDF)/kg of dry matter (DM); HQH = 100% high-quality hay, 11.2 MJ of ME, 210 g of CP, 455 g of NDF/kg of DM; MQH+C = 30% medium-quality hay + 70% starter concentrate; HQH+C = 30% high-quality hay + 70% starter concentrate]. The concentrate consisted mainly of grains, oilseeds, and mineral supplements (13.5 MJ of ME, 193 g of CP, 204 g of NDF/kg of DM). Calves were used in the experiment from d 1 to 99 of life. During the first 4 wk, all calves were fed acidified whole milk ad libitum, and afterward they were gradually weaned from wk 5 to 12. Calves had ad libitum access to their starter diets and water throughout the experiment. Milk, water, and solid feed intake was recorded daily, live weight was measured once a week, and blood samples were collected on d 1, 3, 7, 21, 49, 77, and 91 and analyzed for selected metabolites. The ATTD was measured in wk 14 of life. Total DM intake and daily weight gain of calves were not affected by the starter feed during the first 8 wk of life. However, from wk 9 to 14, calves fed the MQH diet had lower DM, ME, and CP intake and gained less weight than calves from the other experimental groups. Feeding the HQH diet resulted in similar CP and ME intake and growth performance compared with calves receiving diets containing concentrates. Furthermore, feeding the HQH diet improved the ATTD of NDF, resulting in similar ATTD of organic matter with the HQH+C and MQH+C groups. Interestingly, calves fed the HQH+C diet showed less sorting for concentrate, compared with the MQH+C group. Concentration of blood metabolites, including glucose, lactate, insulin, nonesterified fatty acids, triglycerides, and total protein, did not differ after the first week of life. However, serum β-hydroxybutyrate was higher in calves fed the HQH diet starting from wk 11. Both groups fed the hay-only diets maintained higher cholesterol levels after weaning compared with the groups fed hay-concentrate mixtures. In conclusion, feeding high-quality hay can fully replace starter concentrates in the feeding of dairy calves without adverse effects on performance during the rearing period, while increasing forage fiber intake and utilization, which enhanced ruminal ketogenesis and cholesterogenesis around weaning. Further research is needed to evaluate long-term effects of feeding high-quality hay on health and development of dairy calves, especially in terms of the observed improvements in ruminal ketogenesis and cholesterogenesis around weaning.  相似文献   

5.
《Journal of dairy science》2019,102(9):7917-7926
The objective of this study was to evaluate nutrient intake and digestibility, and growth performance of calves when fed a milk replacer (MR) at 2 feeding rates. Male Holstein calves [n = 49; 45.0 ± 5.2 (mean ± SD) kg of body weight (BW); 3 to 4 d of age] were randomly assigned to 1 of 2 MR [27% crude protein (CP), 18% fat, dry matter (DM) basis; 14% solid] feeding programs: (1) 0.66 kg of DM/d for first 39 d divided into 2 equal a.m. and p.m. meals followed by one-half of the allotment per day for 3 d fed in the a.m. feeding only (moderate); (2) 0.96 kg of DM/d for the first 42 d divided into 2 equal a.m. and p.m. meals followed by one-half of the allotment per day for 7 d fed in the a.m. feeding only (high). A textured starter fed to calves contained whole grains with 20% CP and 44% starch (DM basis). At d 56, calves were moved into groups by treatment (4 calves/pen) and fed the same starter blended with 5% hay until d 112. Data were analyzed as a completely randomized design, or as a completely randomized design with repeated measures when applicable. Over the entire nursery period (d 0–56), there were no differences in average daily gain (0.63 vs. 0.64 kg/d) and hip width change (4.44 vs. 4.57 cm) for moderate- versus high-fed calves. Apparent digestibility of DM (76.5 vs. 70.3%), organic matter (77.4 vs. 71.2%), CP (78.8 vs. 72.6%), and neutral detergent fiber (37.2 vs. 22.7%) differed between moderate- and high-fed calves when estimated at d 51 to 55. From d 56 to 112, average daily gain (0.99 vs. 0.91 kg/d), hip width change (5.32 vs. 4.68 cm), and gain/DM intake (0.335 vs. 0.307 kg/kg) were greater, but DM intake per kg of BW (0.028 vs. 0.028 kg/kg) did not differ for calves previously fed moderate versus high. Feeding calves more than 0.66 kg of DM/d from a 27% CP, 18% fat MR did not improve BW gain and structural growth in the nursery period (d 0–56), and decreased these in the grower period (d 56–112) partially through reduction in digestibility of the starter.  相似文献   

6.
《Journal of dairy science》2022,105(12):9597-9609
The present study was intended to evaluate the effect of forage source (alfalfa hay; ALF vs. corn silage; CS) along with a supplemental fat source (soybean oil; SO vs. rumen-inert palm fatty acids; PF) on growth performance, nutrient digestibility, and ruminal fermentation in dairy calves. Forty-eight new-born Holstein female calves (3 d old) were assigned to one of 4 treatments: (1) alfalfa hay with soybean oil (ALF–SO); (2) alfalfa hay with palm fatty acids (ALF–PF); (3) corn silage with soybean oil (CS–SO); (4) corn silage with palm fatty acids (CS–PF). Starter diets had equal amounts of forage (100 g/kg dry matter; DM) and fat source (30 g/kg DM). Calves were fed a constant amount of milk (d 1 to 63) and had ad libitum access to water and starters (d 1 to 83). The lowest and greatest starter intakes during the preweaning period occurred in ALF–SO and CS–PF, respectively. This coincided with forage × fat source interaction for average daily gain (ADG) during preweaning. The forage source affected total DM intake and ADG over the entire period, body weight (BW) at weaning, and final BW with greater values in calves that received CS compared with ALF. The concentrations of total short-chain fatty acids and butyrate were increased, whereas concentration of acetate and acetate:propionate ratio were decreased in the rumen of calves fed CS compared with ALF. Feeding CS increased urinary excretion of allantoin and, as a trend, total purine derivatives (PD) and estimated microbial protein synthesis in comparison with ALF. The fat source affected starter intake, ADG, and BW postweaning with the highest values in PF. The digestibility of neutral detergent fiber, crude protein and, as a trend, organic matter were higher in calves fed PF compared with SO. Calves fed PF had lower ruminal ammonia-N concentration and urinary N excretion and greater urinary excretion of allantoin and total PD. Calves receiving SO had a lower ruminal protozoa population. In conclusion, supplementing starter diets with CS and PF is superior to ALF and SO. Interaction of the positive effects of CS and PF on performance underlines that concurrent supplementation of CS with PF is especially recommendable in young calves before weaning.  相似文献   

7.
This two-phase trial involved 83 Holstein heifers. The rearing phase consisted of two diets (alfalfa silage plus corn grain for ad libitum intake vs. corn silage plus urea for ad libitum intake) and two breeding age groups (13 vs. 16 mo). The lactation phase compared the above treatments plus two lactation feeding systems: concentrate fed individually to production versus a TMR. The heifers were assigned randomly to the rearing phase at 7 wk of age and fed their respective diets until 14 d prepartum. They were placed on preassigned lactation diets 14 d prepartum and remained on the lactation phase for 550 consecutive d. Daily gains and height at the withers were similar between forage groups during the first half of the rearing phase; in the second half, the heifers fed alfalfa silage were taller at the withers. Those fed corn silage consumed less DM and CP throughout the rearing phase and gained more BW than the heifers fed alfalfa in the latter half. There were no differences in daily gain or DMI between the breeding age groups. In the lactation phase, the group fed alfalfa for ad libitum intake consumed more DM and gave more milk during the first 90 d of lactation than heifers fed corn silage. However, after 90 d the difference in cumulative milk production was not significant. There were no differences in milk production. FCM, or DMI between breeding age groups. The cows fed concentrate consumed more DM and gave more milk during the first 90 d of lactation. By 550 d, there were no differences. Feeding high levels of corn silage can cause heifers to have lower DMI in early lactation. These differences tend to disappear during the second lactation.  相似文献   

8.
The objectives of this study were to evaluate the effects of limit feeding diets containing concentrates or by-products in place of forages on manure and nutrient excretion in growing, gravid heifers. Eighteen Holstein heifers confirmed pregnant were grouped by due date and fed 1 of 3 diets (n = 6 per treatment) for the last 14 wk of pregnancy. Diets were high forage, fed ad libitum (HF); by-product based (BP), fed at the same rate as HF-fed heifers; or low forage (LF), fed at 86% of the HF diet. Diets were designed to supply equal quantities of P, N, and metabolizable energy. Total collection of feces and urine was conducted in wk 14, 10, 6, and 2 prepartum. The HF ration was 90.7% forage, 13.7% crude protein (CP), and contained orchardgrass hay, corn silage, corn grain, soybean meal 44%, and a vitamin-mineral premix. The BP diet was 46.2% forage and 14.0% CP, with 70% of the grain mix space replaced with soybean hulls and cottonseed hulls in a 1:1 ratio, with intake limited to 93% of the dry matter intake (DMI) of HF. The LF ration was 45.3% forage and 17.8% CP, with intake limited to 86% of the DMI of HF. The effect of diet was analyzed with repeated measures, using preplanned contrasts to compare HF with BP and LF with HF and BP. As designed, heifers fed HF and BP had greater DMI than the heifers limit-fed LF, and there was no effect of diet on average daily gain or BW. Intake and digestibility of N were lower, and fecal N excretion was higher, in heifers fed HF and BP than heifers fed LF. Mean feces excretion on both a wet and dry basis was greater for HF heifers compared with BP heifers and less for LF heifers than for HF and BP heifers. Despite differences in urinary output, diet had no effect on urea N excretion, but there was a trend for heifers fed HF and BP rations to excrete less urinary N compared with those fed LF. Compared with HF and BP heifers, LF heifers tended to have lower fecal P excretion and had higher urinary P excretion. Measured manure and urine excretion from heifers fed LF was greater than current American Society of Agricultural and Biological Engineers values, whereas heifers fed HF excreted less manure and urine than predicted. Heifers achieving similar rates of gain from diets differing in forage, grain, and by-product content excreted widely varying quantities of manure.  相似文献   

9.
The objective of this study was to determine if increasing the energy and protein intake of heifer calves would affect growth rates, age at puberty, age at calving, and first lactation milk yield. A second objective was to perform an economic analysis of this feeding program using feed costs, number of nonproductive days, and milk yield data. Holstein heifer calves born at the Michigan State Dairy Cattle Teaching and Research Center were randomly assigned to 1 of 2 dietary treatments (n = 40/treatment) that continued from 2 d of age until weaning at 42 d of age. The conventional diet consisted of a standard milk replacer [21.5% crude protein (CP), 21.5% fat] fed at 1.2% of body weight (BW) on a dry matter basis and starter grain (19.9% CP) to attain 0.45 kg of daily gain. The intensive diet consisted of a high-protein milk replacer (30.6% CP, 16.1% fat) fed at 2.1% of BW on a dry matter basis and starter grain (24.3% CP) to achieve 0.68 kg of daily gain. Calves were gradually weaned from milk replacer by decreasing the amount offered for 5 and 12 d before weaning for the conventional and intensive diets, respectively. All calves were completely weaned at 42 d of age and kept in hutches to monitor individual starter consumption in the early postweaning period. Starting from 8 wk of age, heifers on both treatments were fed and managed similarly for the duration of the study. Body weight and skeletal measurements were taken weekly until 8 wk of age, and once every 4 wk thereafter until calving. Calves consuming the intensive diet were heavier, taller, and wider at weaning. The difference in withers height and hip width was carried over into the early post-weaning period, but a BW difference was no longer evident by 12 wk of age. Calves fed the intensive diet were younger and lighter at the onset of puberty. Heifers fed the high-energy and protein diet were 15 d younger at conception and 14 d younger at calving than heifers fed the conventional diet. Body weight after calving, daily gain during gestation, withers height at calving, body condition score at calving, calving difficulty score, and calf BW were not different. Energy-corrected, age-uncorrected 305-d milk yield was not different, averaging 9,778 kg and 10,069 kg for heifers fed the conventional and intensive diets, respectively. However, removing genetic variation in milk using parent average values as a covariate resulted in a tendency for greater milk from heifers fed the intensive diet. Preweaning costs were higher for heifers fed the intensive diet. However, total costs measured through first lactation were not different. Intensified feeding of calves can be used to decrease age at first calving without negatively affecting milk yield or economics.  相似文献   

10.
One hundred seventy-nine Holstein male calves [44.7 kg of body weight (BW) and 8.3 d of age] participated in a series of 3 experiments to evaluate the effect of different forage sources on performance, apparent digestibility, and feeding behavior. Animals in each study were randomly assigned to 1 of 3 different dietary treatments: control (CON) calves were fed starter feed without any forage provision (this treatment was repeated in each of the 3 experiments), and the 2 other treatments consisted of the same starter feed plus a forage source: chopped alfalfa (AH) or rye-grass hay (RH) in the first study; chopped oat hay (OH) or chopped barley straw (BS) in the second study; corn silage (CS) or triticale silage (TS) in the third study. All calves were offered 2L of milk replacer (MR) at 12.5% dry matter (DM) twice daily via a bottle until 50 d of age, and 2L of MR at 12.5% DM during the week before weaning (57 d of age). The study finished when calves were 71 d old. Starter feed, MR, and forage intakes were recorded daily and BW weekly. Calves were individually housed and bedded with wood shavings. Compared with CON, animals receiving OH, TS, and BS consumed more starter feed (0.88 vs. 1.14, 1.17, 1.06 kg/d, respectively) and had greater average daily gain (0.72 vs. 0.93, 0.88, 0.88 kg/d, respectively). Animals in treatments RH, BS, CS, and TS consumed less forage (51 g/d) than AH (120 g/d) and OH (101 g/d) calves. Apparent organic matter, DM, and neutral detergent fiber digestibilities did not differ among treatments (81.5, 81.1, and 54.4%, respectively). Apparent crude protein digestibility was greater in RH, CS, and AH treatments than in CON (80.5 vs. 76.4%, respectively). Compared with CON calves, animals in the AH treatment spent less time eating starter feed and lying, animals in AH and RH treatments spent more time ruminating, with odds ratios (OR) of 5.24 and 5.40, respectively. The AH and RH calves devoted less time to performing nonnutritive oral behaviors (OR: 0.38 and 0.34, respectively), and TS calves tended to devote less time to perform nonnutritive oral behaviors (OR: 0.21) 1h after being offered MR and solid feed. In conclusion, free-choice provision of a forage source to young calves improves feed intake and performance without impairing digestibilities of DM, organic matter, crude protein, and neutral detergent fiber, and, depending on forage source, reduces nonnutritive oral behaviors and stimulates rumination.  相似文献   

11.
Selection for divergence between individuals for efficiency of feed utilization (residual feed intake, RFI) has widespread application in the beef industry and is usually undertaken when animals are fed diets based on silages with grain. The objective of this research was to develop a feeding system (using Gallagher, Hamilton, New Zealand, electronics) to measure RFI for growth in Holstein-Friesian heifers (aged 5-9 mo), and identify divergent individuals to be tested for RFI during lactation. A dry forage diet (alfalfa cubes) was fed because intakes could be measured accurately, and the New Zealand dairy industry (4.4 million milking cows in lactation) relies heavily on forage feeding. The evaluation was undertaken over 3 yr with 1,052 animals fed in a facility for 7 wk, and weighed 3 times weekly. The mean age at the start of measurements was 215 d, body weight (BW) 189 kg, and mean daily dry matter intakes averaged 6.7 kg. Body weight gain (all animals) averaged 0.88 kg/d. The RFI was determined as the residuals from the regression of mean intake on mean BW(0.75) and daily BW gain of individuals. Actual and fitted intakes were strongly related (R(2) = 0.82). In terms of gross efficiency (feed intake/BW gain), RFI+year explained 43% of the variation, BW gain+year explained 66%, and RFI+BW gain+year explained 79% of the variation (all P<0.001). Daily BW gains (kg) of the most and least efficient 10% averaged (± standard deviation) 0.88 ± 0.15 and 0.88 ± 0.12 (P = 0.568), respectively, and the divergence between mean intakes was 1.46 kg of dry matter/d. The most and least efficient animals will be tested for RFI during lactation and genetic markers will be identified for the trait.  相似文献   

12.
The objective of this study was to determine whether the improvement of performance of young calves associated with the supplementation of chopped grass hay reported in some studies is due to an increase in the total neutral detergent fiber (NDF) content of the consumed diet or to the provision of chopped grass hay. Sixty-three Holstein calves [9 ± 4.4 d old; mean ± standard deviation (SD)] were randomly distributed in 4 treatments resulting from the combination of 2 levels of NDF content of a pelleted starter and the supply or absence of forage provision: low-NDF starter (18%) with or without chopped oat hay, and high-NDF starter (27%) with or without chopped oat hay. All animals were fed the same milk replacer (21% crude protein and 19.2% fat) at the rate of 4 L/d at 15% dry matter from d 1 to 34, and 2 L/d at 15% dry matter from d 35 to 42 (weaning). The study finished 2 wk after weaning. Body weight was measured weekly and individual calf starter and hay intake was recorded daily. On d 50, blood samples were drawn 2 h after the morning concentrate offer to determine serum glucose and insulin concentrations. On d 52, samples of ruminal fluid were obtained via an esophageal tube, and pH was measured immediately. During the preweaning period, pelleted starter intake was similar among treatments, but average daily gain tended to be greater in low- than in high-NDF treatments (0.69 vs. 0.63 ± 0.020 kg/d, respectively; mean ± SD). However, during the 2 wk after weaning, supplementation of forage improved pelleted starter intake and average daily gain without affecting the gain-to-feed ratio. Probably, the greater pelleted starter intake observed in forage-supplemented calves was mainly due to the greater ruminal pH found in forage-supplemented calves compared with forage-deprived calves (5.81 vs. 5.05 ± 0.063, respectively). Blood insulin-to-glucose ratio was greater in forage-supplemented compared with unsupplemented calves [mean ± SD; 6.53 vs. 4.24 ± 0.125 insulin (ng/L)-to-glucose (mg/dL) ratio, respectively]. In conclusion, a low-NDF pelleted starter is recommended during the preweaning period, and the provision of chopped hay is necessary right after weaning to improve calf performance.  相似文献   

13.
The effects of feeding two levels of supplemental fat and extra milk replacer solids on Holstein calves housed in hutches during the winter were investigated. Fifty calves (10 per treatment) were assigned to the following dietary treatments: 1) milk replacer (control) reconstituted to 12.5% DM fed at 10% of BW (adjusted weekly), 2) same as treatment 1 plus 113 g/d of supplemental fat, 3) milk replacer reconstituted to 15% DM and fed at 10% of BW (adjusted weekly), 4) same as treatment 1 plus 226 g/d of supplemental fat, and 5) milk replacer reconstituted to 15% DM fed at 14% of BW (adjusted weekly). Half the amount of milk replacer consumed during wk 4 was fed during wk 5, and calves were weaned to dry feed at 35 d of age. A pelleted starter was offered for ad libitum intake throughout the 42-d trial. Gains in BW were greater for calves fed 226 than 113 or 0 g/d of supplemental fat (d 3 to 28). Calves fed milk replacer reconstituted to 15% DM at 14% of BW had greater BW gains during d 3 to 28 than control. Starter consumption was similar between groups receiving 113 and 0 g/d of fat supplement but lower in the group fed 226 g/d. Extra milk replacer solids in diets increased fecal scores to levels greater than those of calves in other groups. The benefit of fat supplementation of milk replacers was manifested as increased BW gain during the 1st mo of life.  相似文献   

14.
Our objective was to determine the effects of feeding carinata meal (CRM) compared with distillers dried grains with solubles (DDGS) on growth performance, rumen fermentation, and nutrient utilization in peripubertal dairy heifers. A 16-wk randomized block design experiment with 24 Holstein heifers [6.6 ± 0.7 mo and 218 ± 27 kg of body weight (BW)] was conducted. Treatments diets were (1) 10% cold-pressed CRM and (2) 10% DDGS on a dry matter (DM) basis. The remainder of the diets consisted of grass hay, ground corn, soybean meal, and mineral mix. Diets were formulated to be isonitrogenous and isocaloric. Heifers were individually fed using a Calan gate feeding system, and the rations were limit-fed at 2.65% of BW on a DM basis to target a 0.8 kg/d of average daily gain. Heifers were weighed every 2 wk and the ration amount offered was adjusted accordingly. Frame sizes, BW, and body condition scores were measured 2 d every 2 wk throughout the study. During wk 12 and 16, rumen fluid samples were collected via esophageal tubing for pH, ammonia N, and volatile fatty acid analyses. In wk 16, fecal grab samples were collected for apparent total-tract digestibility estimation. Heifer DM intake, BW, average daily gain, and gain:feed were similar between treatments. No differences were observed between treatments in frame measurements or body condition scores. Rumen pH tended to be greater in CRM compared with DDGS. Rumen ammonia N and total volatile fatty acid concentration were not different between treatments. Apparent total-tract digestibility of DM, neutral detergent fiber, and acid detergent fiber were decreased in CRM compared with DDGS. A tendency was detected for reduced organic matter digestibility in CRM. No difference was observed between treatments for crude protein total-tract digestibility. However, these differences in total-tract nutrient digestibility were not large enough to influence growth performance. Overall, results demonstrated that growing heifers can be limit-fed diets with 10% CRM and maintain growth performance compared with a control diet containing 10% DDGS.  相似文献   

15.
The objective of this study was to evaluate 3 milk replacer (MR) feeding programs on calf performance to 4 mo of age. Male Holstein calves (n = 48; 2–3 d old) were randomly assigned to either a moderate rate of MR (MOD; 0.66 kg/d for 39 d, then 0.33 kg/d for 3 d), an ad libitum rate of MR (ADLIB; offered twice daily between 0630 and 0830 h and between 1430 and 1630 h for 35 d, 0.66 kg/d for 4 d, and 0.33 kg/d for 3 d), or a step-up rate of MR (STEPUP; increased from 0.32 to 0.62 kg/d in first 12 d, 0.66 kg/d for 27 d, and 0.33 kg/d for 3 d). The MR (25% CP, 18% fat) was fed twice daily to d 39 and once daily thereafter. During the nursery phase (0–56 d), calves were housed in individual pens and offered textured starter (40% starch, 21% CP on a DM basis) and water ad libitum. Calf body weight (BW) was measured initially and weekly thereafter. Hip widths (HW) were measured initially and every 2 wk thereafter. In the grower phase, (57–112 d), calves were grouped by previous treatment and moved to group pens (4 calves/pen). The same starter used in the nursery phase was blended with 5% chopped grass hay and offered ad libitum. Calf BW and HW were measured on d 56, 84, and 112. Total MR intake per calf averaged 27, 51, and 25 kg for MOD, ADLIB, and STEPUP programs, respectively, with a range of 42 to 63 kg for ADLIB. In the nursery phase, starter intake and feed efficiency were less for ADLIB versus MOD, whereas fecal scores and abnormal fecal score days were greater for calves fed ADLIB versus MOD. Calves fed STEPUP had lesser average daily gain than calves fed MOD. During the grower phase, initial BW was greater for ADLIB versus MOD, though final BW was not different between MOD and ADLIB or STEPUP. Calves previously fed MOD had greater average daily gain, feed efficiency, and HW change than calves fed ADLIB. In this study, feed efficiency was lower when MR was fed ad libitum, and growth advantages observed at 2 mo were lost by 4 mo of age.  相似文献   

16.
Objectives were to evaluate the effect of prepartum energy intake on performance of dairy cows supplemented with or without ruminally protected choline (RPC; 0 or 17.3 g/d of choline chloride; 0 or 60 g/d of ReaShure, Balchem Corp., New Hampton, NY). At 47 ± 6 d before the expected calving date, 93 multiparous Holstein cows were assigned randomly to 1 of 4 dietary treatments in a 2 × 2 factorial arrangement. Cows were fed energy to excess [EXE; 1.63 Mcal of net energy for lactation/kg of dry matter (DM)] or to maintenance (MNE; 1.40 Mcal of net energy for lactation/kg of DM) in ad libitum amounts throughout the nonlactating period. The RPC was top-dressed for 17 ± 4.6 d prepartum through 21 d postpartum (PP). After calving, cows were fed the same methionine-balanced diet, apart from RPC supplementation, through 15 wk PP. Liver was biopsied at ?14, 7, 14, and 21 d relative to parturition. Cows fed EXE or MNE diets, respectively, consumed 40 or 10% more Mcal/d than required at 15 d before parturition. Cows fed the MNE compared with the EXE diet prepartum consumed 1.2 kg/d more DM postpartum but did not produce more milk (41.6 vs. 43.1 kg/d). Thus, PP cows fed the EXE diet prepartum were in greater mean negative energy balance, tended to have greater mean concentrations of circulating insulin, fatty acids, and β-hydroxybutyrate, and had greater triacylglycerol in liver tissue (8.3 vs. 10.7% of DM) compared with cows fed the MNE diet prepartum. Cows fed RPC in transition tended to produce more milk (43.5 vs. 41.3 kg/d) and energy-corrected milk (44.2 vs. 42.0 kg/d) without increasing DM intake (23.8 vs. 23.2 kg/d) during the first 15 wk PP, and tended to produce more milk over the first 40 wk PP (37.1 vs. 35.0 kg/d). Energy balance of cows fed RPC was more negative at wk 2, 3, and 6 PP, but mean circulating concentrations of fatty acids and β-hydroxybutyrate did not differ from those of cows not fed RPC. Despite differences in energy balance at 2 and 3 wk PP, mean concentration of hepatic triacylglycerol did not differ between RPC treatments. Feeding RPC reduced the daily prevalence of subclinical hypocalcemia from 25.5 to 10.5%, as defined by concentrations of total Ca of <8.0 mg/dL in serum in the first 7 d PP. Pregnancy at first artificial insemination tended to be greater for cows fed RPC (41.3 vs. 23.6%), but the proportion of pregnant cows did not differ by 40 wk PP. Heifers born from singleton calvings from cows fed RPC tended to experience greater daily gain between birth and 50 wk of age than heifers from cows not supplemented with RPC. Feeding RPC for approximately 38 d during the transition period tended to increase yield of milk for 40 wk regardless of amount of energy consumed during the pregnant, nonlactating period.  相似文献   

17.
《Journal of dairy science》2022,105(3):2201-2214
The objective of this study was to determine growth, feed intake, and feed efficiency of postbred dairy heifers with different genomic residual feed intake (RFI) predicted as a lactating cow when offered diets differing in energy density. Postbred Holstein heifers (n = 128, ages 14–20 mo) were blocked by initial weight (high, medium-high, medium-low, and low) with 32 heifers per block. Each weight block was sorted by RFI (high or low) to obtain 2 pens of heifers with high and low genomically predicted RFI within each block (8 heifers per pen). Low RFI heifers were expected to have greater feed efficiency than high RFI heifers. Dietary treatments consisted of a higher energy control diet based on corn silage and alfalfa haylage [HE; 62.7% total digestible nutrients, 11.8% crude protein, and 45.6% neutral detergent fiber; dry matter (DM) basis], and a lower energy diet diluted with straw (LE; 57.0% total digestible nutrients, 11.7% crude protein, and 50.1% neutral detergent fiber; DM basis). Each pen within a block was randomly allocated a diet treatment to obtain a 2 × 2 factorial arrangement (2 RFI levels and 2 dietary energy levels). Diets were offered in a 120-d trial. Dry matter intake by heifers was affected by diet (11.0 vs. 10.0 kg/d for HE and LE, respectively) but not by RFI or the interaction of RFI and diet. Daily gain was affected by the interaction of RFI and diet, with low RFI heifers gaining more than high RFI heifers when fed LE (0.94 vs. 0.85 kg/d for low and high RFI, respectively), but no difference for RFI groups when fed HE (1.16 vs. 1.19 kg/d for low and high RFI, respectively). Respective feed efficiencies were improved for low RFI compared with high RFI heifers when fed LE (10.6 vs. 11.8 kg of feed DM/kg of gain), but no effect of RFI was found when fed HE (9.4 vs. 9.5 kg of DM/kg of gain for high and low RFI, respectively). No effect of RFI or diet on first-lactation performance through 150 DIM was observed. Based on these results, the feed efficiency of heifers having different genomic RFI may be dependent on diet energy level, whereby low RFI heifers utilized the LE diet more efficiently. The higher fiber straw (LE) diet controlled intake and maintained more desirable heifer weight gains. This suggests that selection for improved RFI in lactating cows may improve feed efficiency in growing heifers when fed to meet growth goals of 0.9 to 1.0 kg of gain/d.  相似文献   

18.
Dairy cattle exhibit characteristic feeding behavior patterns that may be influenced by early experiences. The objective of this study was to determine how early exposure to different feed types affects diet selection behavior of dairy calves once fed a mixed ration after weaning off milk. Eight Holstein bull calves were randomly assigned at birth to a feed exposure treatment: concentrate or grass/alfalfa hay, offered ad libitum. All calves were offered 8 L/d of milk replacer [1.2 kg of dry matter (DM)] from birth, which was incrementally reduced after 4 wk to enable weaning by the end of wk 7. After milk weaning, all calves were fed a mixed ration containing (on a DM basis) 60% concentrate and 40% grass/alfalfa hay for 9 wk. Intake was recorded daily, and calves were weighed 3 times/wk. Samples of fresh feed and orts were taken in wk 8, 12, and 16 for particle size analysis. The separator had 3 screens (19, 8, and 1.18 mm) producing long, medium, short, and fine particle fractions. Sorting of each fraction was calculated as actual intake as a percentage of predicted intake. Calves exposed to concentrate tended to have greater DM intake than calves exposed to hay both before (0.49 vs. 0.16 kg/d) and after weaning off milk (3.3 vs. 2.6 kg/d). Weights were similar during the milk-feeding stage, but calves exposed to concentrate had greater weights overall in the postweaning stage (129.8 vs. 112.6 kg). Initially after weaning, calves sorted for familiar feed; calves previously exposed to concentrate sorted for short particles (126.4%), which were primarily concentrate, whereas calves previously exposed to hay did not (94.2%). Calves previously exposed to hay tended to sort for long particles (113.4%), which were solely hay, whereas calves previously exposed to concentrate sorted against them (56.4%). The sorting observed for short particles was associated with consuming a diet with a greater concentration of protein, nonfiber carbohydrates, and metabolizable energy, whereas sorting for long particles was associated with consuming a diet with a greater concentration of neutral detergent fiber. After 4 wk of exposure to the mixed ration, sorting was similar between treatments, with calves in both treatment groups sorting for short (117.4 and 120.5%) and against long (62.4 and 54.4%) particles, and consuming a diet with a similar concentration of nutrients and energy. These results indicate that feed familiarity affected initial diet selection postweaning, but may not have a lasting effect, with all calves developing similar feed-sorting patterns.  相似文献   

19.
Holstein calves were fed pelleted iso-starch (25% of starter dry matter) diets containing barley (n = 16), corn (n = 16), oat (n = 16), and wheat (n = 16) starch for 12 wk of age. Feed consumption, nutrient intake, body weight (BW) gain, skeletal growth, and selected blood metabolites in calves during preweaning (d 1 to 49) and postweaning (d 50 to 84) periods were measured. Average daily starter consumption during pre-weaning and postweaning periods was the greatest in calves fed corn died followed by those fed a wheat diet and then in those fed barley and oat diets. During the preweaning period, the calves provided corn and wheat diets consumed greater amount of mixed grass hay than those fed barley and oat diets. During the postweaning period, mixed grass hay intake was the greatest in calves provided corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Nutrients (dry matter, crude protein, starch, and neutral detergent fiber) intake followed the solid feed consumption pattern in calves. Body weight and body measurements (body length, body barrel, heart girth, wither height, and hip height) at birth and at weaning (d 49) in calves fed different starch sources were similar. Body weight and body measurements at postweaning (d 84) were the greatest in calves fed a corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Overall average BW gain and total dry matter intake were the greatest in calves fed a corn diet than in those fed wheat, barley, and oat diets. Feed efficiency was greater in calves fed corn and wheat diets than in those fed barley and oat diets. Blood glucose, blood urea N, triglycerides, cholesterol, and creatinine were reduced with the advancing age of calves. Lesser blood glucose and greater blood urea N concentrations at wk 8, 10, and 12 of age were noticed in calves fed corn diet than in those fed barley, oat, and wheat diets. Occurrence of diarrhea was more frequent in calves fed oat diet than in those provided barley, corn, and wheat diets. Starch sources did not influence respiratory score, rectal temperature, and general appearance score. In conclusion, the calves on corn diet consumed more solid feed and gained greater BW than those fed barley, oat, and wheat diets.  相似文献   

20.
The effect of form of starter grain (coarse vs. ground) and inclusion of various levels of hay on body weight gain and rumen development was evaluated. Two experiments were conducted to determine the effect of form of diet and forage inclusion on intake, growth, feed efficiency, and weaning age in dairy calves. Diets consisted of commercial coarse starter (C), ground starter (G), coarse starter with 7.5% bromegrass hay of consistent particle size (8 to 19 mm) (H1), and coarse starter with 15% hay (H2). In experiment 1, intake was held constant across treatments until weaning, when feed was offered ad libitum. Calves receiving H1 and H2 were heavier and had greater body weight gain and greater feed efficiency than calves receiving C. There were no differences in intake. Total volatile fatty acid concentrations were higher, and the proportion of acetate was lower for calves fed G vs. C. In experiment 2, calves (n = 56) were offered diets on an ad libitum basis and weaned according to intake. There were no differences in body weight gain, average daily gain, feed efficiency, and age at weaning with respect to treatment. Starter and total dry matter intake tended to be greater in calves fed H1 and H2 vs. C. The addition of controlled particle size hay to diets of young calves appears to favorably alter rumen environment, resulting in increased intake and improved feed efficiency. Forage of a consistent particle size can be successfully utilized in starter rations of young calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号