首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of dairy science》2022,105(10):8523-8534
The objectives of this retrospective observational study were to determine the associations of anogenital distance (AGD) with (a) postpartum estrous activity, (b) diameter of the preovulatory follicle, (c) intensity of estrous expression, (d) postestrus ovulation, (e) corpus luteum (CL) size, and (f) concentrations of progesterone at estrus and on d 7 after estrus. Lactating Holstein cows (n = 178; 55 primiparous, 123 multiparous) were enrolled into the study during the first postpartum week. All cows were continuously monitored by a pedometer-based automated activity monitoring (AAM) system for estrus. Postpartum estrous activity was assessed using the AAM estrus alerts, in which cows with at least one true estrus alert (i.e., a relative increase in steps from each cow's baseline detected by the AAM and the presence of at least one follicle >15 mm, a CL <20 mm, or no CL detected by ultrasound) by the first 50 d in milk (DIM) were considered to have commenced estrous activity. At the estrus alert >60 DIM, ovulation was determined by ultrasound at 24 h, 48 h, and 7 d after estrus, and blood samples were collected at estrus alert and on d 7 after estrus for progesterone analysis. The AGD was measured from the center of the anus to the base of the clitoris and classified as either short- or long-AGD using 2 cut-points of 148 mm (predictive of the probability of pregnancy to first insemination; short-AGD, n = 115; long-AGD, n = 63) and 142 mm (the median AGD; short-AGD, n = 90; long-AGD, n = 88). Regardless of the cut-point used, early postpartum estrous activity by 50 DIM (67 vs. 54%), duration of estrus (11.6 vs. 9.7 h), and preovulatory follicle diameter (20 vs. 19 mm) were greater in short-AGD than in long-AGD cows. Increased peak of activity at estrus in short-AGD cows (354 vs. 258% mean relative increase) was affected by an interaction between AGD and parity in which multiparous long-AGD cows had lesser relative increase in activity than primiparous cows (217 vs. 386%, respectively). Mean progesterone concentration at estrus was lesser in short-AGD (0.47 vs. 0.61 ng/mL) than in long-AGD cows. The ovulatory response at 24 h did not differ, but at 48 h (91 vs. 78%) and on d 7 after estrus (97 vs. 84%) it was greater in short-AGD cows. Although CL diameter on d 7 after estrus did not differ, short-AGD cows had greater progesterone concentration 7 d after estrus than long-AGD cows (4.1 vs. 3.2 ng/mL, respectively). In conclusion, greater proportions of short-AGD cows commenced estrous activity by 50 DIM, had larger preovulatory follicles, exhibited greater duration of estrus, had reduced progesterone concentration at estrus, had greater ovulation rates and progesterone concentration 7 d after estrus compared with long-AGD cows, with no difference in CL size between AGD groups. Because all the differences in physiological characteristics of short-AGD cows reported herein favor improved reproductive outcomes, we infer that these are factors contributing to improved fertility reported in short-AGD cows compared with long-AGD cows.  相似文献   

2.
The objective of this study was to evaluate the effects of recombinant bovine growth hormone-releasing factor (rGRF) or recombinant bovine somatotropin (rbST) on growth and function of the first-wave dominant follicle and corpus luteum. Primiparous Holstein cows (117 d postpartum) were infused with 12 mg/d of rGRF (n = 10) or 29 mg/d of rbST (n = 10) for 63 d, and non-infused cows (n = 10) were controls. At slaughter on d 5 of an estrous cycle, blood and ovaries were collected and data from cows with a corpus luteum were analyzed (control, n = 8; rGRF, n = 5; rbST, n = 6). Treatment with rGRF or rbST increased somatotropin (ST) and IGF-I in serum similarly compared with controls. In contrast, rbST-treated cows had higher concentrations of ST in follicular fluid (FF) compared with rGRF-treated and control cows. In addition, rbST, but not rGRF, increased the number and decreased the size of estrogen-active follicles (EA; estradiol > progesterone concentrations in FF), increased the abundance of IGF binding proteins-2, -3, and -4 in FF from EA follicles, and increased the number but decreased the size of corpora lutea and decreased concentration of progesterone in serum compared with controls. Based on these results, we concluded that long-term infusion of rbST alters growth and function of the first-wave dominant follicle and the corpus luteum in cattle.  相似文献   

3.
The objective of this study was to examine the association between increased physical activity at the moment of timed artificial insemination (AI), detected by an automated activity monitor (AAM), and fertility outcomes. This paper also investigated factors affecting estrous expression in general. A total of 1,411 AI events from 1,040 lactating Holstein cows were recorded, averaging 1.3 ± 0.6 (±standard deviation) events per cow. Activity (measured as steps/h) was monitored continuously by a leg-mounted AAM located on the rear leg of the cow. Ovulation was synchronized by a timed AI protocol based on estradiol and progesterone. Ovarian ultrasonography was performed in all cows on d ?11 (AI = d 0) and in a subset of cows on d 0 (n = 588) and d 7 (n = 819) to determine the presence of a corpus luteum and follicles. The body condition score (1 to 5 scale) was assessed on d 0 and a blood sample was collected for progesterone measurement on d 7. Using the AAM, an estrus event was determined when the relative increase (RI) in physical activity of the cow exceeded 100% of the baseline activity. The physical activity was classified as strong RI (≥300% RI), moderate RI (100–300% RI), or no estrus (<100% RI). Milk production was measured daily and averaged between d ?11 and 0. Pregnancy was diagnosed at 32 and 60 d post-AI and pregnancy losses were calculated. The mean RI at estrus was 328.3 ± 132.1%. Cows with strong RI had greater pregnancy per AI than those with moderate RI and those that did not express estrus (35.1 vs. 27.3 vs. 6.2%). When including only cows that successfully ovulated after timed AI, those that displayed strong intensity RI still had greater pregnancy per AI than those with moderate intensity RI or those that did not express estrus (45.1 vs. 34.8 vs. 6.2%). Cows expressing strong RI at timed AI had greater ovulation rates compared with moderate RI and cows that did not express estrus (94.9 vs. 88.2 vs. 49.5%). Furthermore, pregnancy losses were reduced in cows with strong RI compared with cows expressing moderate RI (13.9 vs. 21.7%). Cows with a strong RI at estrus were more likely to have a corpus luteum at the beginning of the protocol and had greater concentration of progesterone 7 d post-AI. Multiparous cows expressed lower RI compared with primiparous cows. Cows with lower body condition score tended to have decreased RI at estrus. No correlation between estrous expression and pre-ovulatory follicle diameter was observed. Also, no correlation was observed between milk production at AI and RI. In conclusion, strong intensity RI of estrus events at timed AI was associated with improved ovulation rates and pregnancy per AI, and reduced pregnancy losses. These results provide further evidence that measurements of estrous expression can be used to predict fertility at the time of AI and possibly be used as a tool to assist decision making strategies of reproduction programs.  相似文献   

4.
The objective of the present study was to characterize the phenotypic performance of cows with similar proportions of Holstein genetics, similar genetic merit for milk production traits, but with good (Fert+) or poor (Fert-) genetic merit for fertility traits. Specifically, we tested the hypothesis that cows with a negative estimated breeding value for calving interval would have superior fertility performance and would have detectable differences in body reserve mobilization and circulating concentrations of metabolic hormones and metabolites compared with cows that had a positive estimated breeding value for calving interval. For the duration of the study, cows were managed identically as a single herd in a typical grass-based, spring-calving production system. A total of 80 lactation records were available from 26 Fert+ and 26 Fert- cows over 2 consecutive years (2008 and 2009). During yr 1, cows were monitored during a 20-wk breeding season to evaluate reproductive performance. Milk production, body condition score (scale 1 to 5), body weight, grass dry matter intake, energy balance, and metabolic hormone and metabolite data were collected during both years. The Fert+ cows had greater daily milk yield (19.5 vs. 18.7 kg/d), shorter interval from calving to conception (85.6 vs. 113.8 d), and fewer services per cow (1.78 vs. 2.83). No difference between groups in grass dry matter intake, energy balance, or body weight was observed. The Fert+ cows maintained greater BCS during mid (2.84 vs. 2.74 units) and late lactation (2.82 vs. 2.73 units). Circulating concentrations of insulin-like growth factor-I were greater throughout the gestation-lactation cycle in Fert+ cows (148.3 vs. 128.2 ng/mL). The Fert+ cows also had greater circulating concentrations of insulin during the first 4 wk of lactation (1.71 vs. 1.24 μIU/mL). Analysis of records from national herd data verified the association between genetic merit for fertility traits and phenotypic reproductive performance; Fert+ cows (n = 2,436) required 11.1 d less to recalve than did Fert- cows (n = 1,388), and the percentage of cows that successfully calved for the second time within 365 and 400 d of the first calving was 8 and 13% greater for Fert+ compared with Fert- cows, respectively. These results demonstrate that genetic merit for fertility traits had a pronounced effect on reproductive efficiency, BCS profiles, and circulating concentrations of insulin-like growth factor-I.  相似文献   

5.
This study investigated the factors affecting circulating progesterone (P4) concentrations in cows with similar genetic merit for milk production traits, but with extremes of good (Fert+) or poor (Fert−) genetic merit for fertility traits. Study 1: 28 cows were enrolled in an ovulation synchronization protocol at 61 ± 13 (±standard deviation) days postpartum, and data are presented for 13 Fert+ and 9 Fert− cows that remained in the study. Progesterone concentrations were determined from d 0 to 9 (d 0 = estrus) and on d 7, corpus luteum (CL) volume and blood flow area (BFA) were measured by B-mode and Doppler ultrasonography, respectively. Cows were administered PGF on d 7 in the p.m. and d 8 in the a.m. to regress the CL, and 2 controlled internal drug release devices were inserted per vaginum on d 8 in the a.m. Liver biopsies were collected on d 9 and hepatic mRNA abundance of genes involved in P4 catabolism was determined. On d 10, the controlled internal drug release inserts were removed and frequent blood samples were collected to measure the rate of decline in circulating P4. The Fert+ cows tended to have greater dry matter intake compared with Fert− cows (+0.79 kg of dry matter/d), but similar milk production (29.82 kg/d). After synchronized ovulation, the rate of increase in circulating P4 concentrations was greater in Fert+ cows compared with Fert− cows. No effect of genotype on CL volume was detected, but BFA was 42% greater in Fert+ cows compared with Fert− cows. The Fert− cows had greater mRNA abundance of cytochrome P450, family 3, subfamily A (CYP3A) compared with Fert+ cows, but the mRNA abundance of aldo-keto reductase family 1, member C1 (AKR1C1), AKR1C3, AKR1C4, and cytochrome P450, family 2, subfamily C (CYP2C) were similar. The half-life and metabolic clearance rate of P4 were similar in Fert+ cows and Fert− cows. Study 2: 23 cows were enrolled in an ovulation synchronization protocol at 55 ± 7 (±standard deviation) d postpartum, and data are presented for 13 Fert+ and 8 Fert− cows that remained in the study. On d 4, 7, 10, and 13 (d 0 = estrus), CL volume and BFA were measured as in study 1. Progesterone concentrations were measured from d 1 to 13. Corpus luteum volume was 41% greater in Fert+ cows compared with Fert− cows but no effect of genotype on BFA was detected. Mean circulating P4 concentrations were 79% greater in Fert+ cows compared with Fert− cows. Milk yield was similar in both genotypes. The results indicate that greater circulating P4 concentrations were primarily due to greater CL P4 synthetic capacity rather than differences in P4 clearance in this lactating cow genetic model of fertility.  相似文献   

6.
Ovarian function was compared between nulliparous heifers (n = 29; 10 to 16 mo old) and lactating Holstein cows (n = 31; 55.9 +/- 3.5 d postpartum). Follicular dynamics, corpus luteum growth, and regression, and serum steroid concentrations were evaluated through ultrasonography and daily blood sampling. Most heifers (27 of 29) but only 14 of 31 cows had typical spontaneous estrous cycles after cycles were initiated. Twelve cows had atypical cycles, and 5 became anovulatory during the study. The 12 cows with atypical estrous cycles had low serum estradiol after luteolysis and failed to ovulate the dominant follicle present at luteolysis. Heifers and cows with typical cycles were compared directly. Interovulatory intervals were similar between heifers (22.0 +/- 0.4 d) and cows (22.9 +/- 0.7 d). Those animals had estrous cycles with either 2 (15 heifers; 11 cows), 3 (9 heifers; 2 cows), or 4 follicular waves (3 heifers; 1 cow). Cows ovulated later after luteolysis than heifers (5.2 +/- 0.2 vs. 4.6 +/- 0.1 d, respectively), and had more multiple ovulations (17.9 vs. 1.9%). Maximal serum estradiol concentration preceding ovulation was lower in cows than in heifers (7.9 +/- 0.8 vs. 11.3 +/- 0.6 pg/mL) even though ovulatory follicles were larger in cows (16.8 +/- 0.5 vs. 14.9 +/- 0.2 mm). Similarly, maximal serum progesterone concentration was lower for cows (5.6 +/- 0.5 vs. 7.3 +/- 0.4 ng/mL), whereas maximal volume of luteal tissue was larger for cows than heifers (11,120 +/- 678 vs. 7303 +/- 308 mm3). Thus, higher incidence of reproductive anomalies in lactating cows, such as low conception rate, ovulation failure, delayed ovulation, and multiple ovulations, may be due to lower circulating steroid concentrations in spite of larger ovulatory follicles and luteal structures.  相似文献   

7.
8.
Haemodynamic changes are involved in the cyclic remodelling of ovarian tissue that occurs during final follicular growth, ovulation and new corpus luteum development. The aim of this study was to characterize the real-time changes in the blood flow within the follicle wall associated with the LH surge, ovulation and corpus luteum development in cows. Normally cyclic cows with a spontaneous ovulation (n = 5) or a GnRH-induced ovulation (n = 5) were examined by transrectal colour and pulsed Doppler ultrasonography to determine the area and the time-averaged maximum velocity (TAMXV) of the blood flow within the preovulatory follicle wall and the early corpus luteum. Ultrasonographic examinations began 48 h after a luteolytic injection of PGF(2alpha) analogue was given at the mid-luteal phase of the oestrous cycle. Cows with spontaneous ovulation were scanned at 6 h intervals until ovulation occurred. Cows with GnRH-induced ovulation were scanned just before GnRH injection (0 h), thereafter at 0.5, 1, 2, 6, 12, 24 h and at 24 h intervals up to day 5. Blood samples were collected at the same time points for oestradiol, LH and progesterone determinations. Cows with both spontaneous and GnRH-induced ovulation showed a clear increase in the plasma concentration of LH (LH surge) followed by ovulation 26-34 h later. In the colour Doppler image of the preovulatory follicle, the blood flow before the LH surge was detectable only in a small area in the base of the follicle. An acute increase in the blood flow velocity (TAMXV) was detected at 0.5 h after GnRH injection, synchronously with the initiation of the LH surge. At 12 h after the LH surge, the plasma concentrations of oestradiol decreased to basal concentrations. The TAMXV remained unchanged after the initial increase until ovulation, but decreased on day 2 (12-24 h after ovulation). In the early corpus luteum, the blood flow (area and TAMXV) gradually increased in parallel with the increase in corpus luteum volume and plasma progesterone concentration from day 2 to day 5, indicating active angiogenesis and normal luteal development. Collectively, the complex structural, secretory and functional changes that take place in the ovary before ovulation are closely associated with a local increase in the blood flow within the preovulatory follicle wall. The result of the present study provides the first visual information on vascular and blood flow changes associated with ovulation and early corpus luteum development in cows. This information may be essential for future studies involving pharmacological control of blood flow and alteration of ovarian function.  相似文献   

9.
《Journal of dairy science》2022,105(6):5506-5518
Objectives were to evaluate the effect of 2 analogs of PGF (cloprostenol vs. dinoprost) and 2 doses (1 injection vs. 2 injections) on luteolysis, follicle diameter, hormonal concentrations, and time to ovulation in dairy heifers. Holstein heifers were fitted with automated estrus detection devices and had their estrous cycle synchronized using PGF and an intravaginal insert containing progesterone. Heifers detected in estrus were blocked by weight and randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement: cloprostenol on d 7 after estrus (CLOx1; n = 45), cloprostenol on d 7 and 8 after estrus (CLOx2; n = 41), dinoprost on d 7 after estrus (DINx1; n = 43), or dinoprost on d 7 and 8 after estrus (DINx2; n = 44). Treatment with the first injection of PGF was defined as experiment d 0. Area and blood flow of corpus luteum (CL) and diameter of follicles >5 mm were recorded every 12 h from d 0 to estrus and every 6 h thereafter until ovulation. Blood was sampled every 6 h from d 0 until ovulation. Heifers treated with cloprostenol had shorter interval to luteolysis (± SEM; CLOx1 = 23.5 ± 2.2, CLOx2 = 22.9 ± 2.2, DINx1 = 32.6 ± 2.7, DINx2 = 26.4 ± 2.1 h); however, time to ovulation was not affected by treatment. A smaller proportion of heifers treated with a single injection of PGF underwent luteolysis compared with heifers treated with 2 injections (CLOx1 = 84.6 ± 6.2, CLOx2 = 100.0 ± 0.0, DINx1 = 59.7 ± 9.8, DINx2 = 96.3 ± 2.7%). Proportion of heifers that ovulated was smaller for DINx1 compared with other treatments (CLOx1 = 88.8 ± 5.1, CLOx2 = 100.0 ± 0.0, DINx1 = 55.2 ± 9.7, DINx2 = 94.4 ± 3.4%). Ovulatory follicle diameter was larger for DINx1 (18.2 ± 2.7 mm) compared with DINx2 (17.4 ± 2.7 mm), whereas dose did not affect the diameter of the ovulatory follicle in heifers treated with cloprostenol (CLOx1 = 17.6 ± 2.7 vs. CLOx2 = 17.8 ± 2.8 mm). Among heifers that underwent luteolysis, progesterone concentrations from 18 to 36 h after treatment were lesser in heifers treated with cloprostenol compared with those treated with dinoprost. Type of PGF did not affect progesterone concentrations past 36 h from treatment; however, heifers treated with 2 PGF injections had lesser progesterone concentrations and CL blood flow from 36 to 72 h after treatment compared with heifers that received a single PGF injection.  相似文献   

10.
The effects of pregnancy on follicular dynamics and corpus luteum growth and function are somewhat contentious. In an effort to learn more about the effects of pregnancy, the reproductive tracts of 16 bred dairy cows were monitored using an ultrasound device with a rectal probe through the first 60 d of pregnancy or upon a return to estrus. Additionally, blood samples were collected for progesterone determination. Eleven of 16 cows were diagnosed pregnant by 25 d postbreeding. There were two embryonic mortalities between 28 and 32 d. A two-wave pattern of follicular growth and atresia, each wave resulting in a large dominant follicle, was seen in both pregnant and nonpregnant cows during the first 24 d postbreeding. Pregnant cows had more follicles than nonpregnant cows; however, there was no difference in the size of the largest follicle. A wave-like pattern of growth of large follicles continued throughout the study period in pregnant cows. Progesterone profiles, corpus luteum growth rate, and maximum size of the corpus luteum were similar in both pregnant and nonpregnant cows. It is concluded that growth of dominant follicles and of the corpus luteum is unaffected during the first 60 d of pregnancy.  相似文献   

11.
Progesterone-containing devices can be inserted intravaginally for 14 d to presynchronize the estrous cycle for timed artificial insemination (TAI) in beef heifers ("14-day CIDR-PG" or "Show-Me-Synch" program). The progesterone treatment is effective for presynchronization because cattle develop a persistent dominant follicle during treatment that ovulates within 3 d after progesterone removal. The subsequent estrous cycle can be effectively used for a TAI program. Some cattle will retain a functional corpus luteum (CL) for the entire 14-d treatment period and will not be synchronized effectively because the interval to ovulation depends on the lifespan of their existing CL. The objective was to test the effect of a luteolytic dose of PGF(2α) at progesterone removal for improving synchrony of estrus after treatment and increasing conception rate to a subsequent TAI in dairy cows. Postpartum cows (n = 1,021) from 2 grazing dairy herds were assigned to 1 of 2 presynchronization programs that used a controlled internal drug releasing (CIDR) device containing progesterone: 14dCIDR (CIDR in, 14 d, CIDR out; n = 523) or 14dCIDR+PGF(2α) (CIDR in, 14 d, CIDR out, and PGF(2α); n = 498). Cows were body condition scored (BCS; 1 to 5, thin to fat) and tail painted at CIDR removal. Paint score (PS) was recorded after CIDR removal [PS = 0 (all paint removed, indication of estrus), PS = 3 (paint partially removed), or PS = 5 (no paint removed; indication of no estrus)]. At 19 d after CIDR removal, all cows were treated with PGF(2α), 56 h later treated with GnRH, and then 16 h later were TAI. Treating cows with PGF(2α) at CIDR removal increased the percentage with PS = 0 within 5 d (58.1% vs. 68.9%; 14dCIDR vs. 14dCIDR+PGF(2α)). We found no effect of treatment, however, on conception rate at TAI (41.1% vs. 43.6%; respectively). The TAI conception rate increased with increasing BCS and was greater for cows that had PS = 0 within 5 d after CIDR removal. In summary, treating cows with PGF(2α) at CIDR removal increased the percentage of cows with all tail paint removed but did not increase percentage of pregnant cows after TAI.  相似文献   

12.
Lactating dairy cows (n=57) ≥45 d postpartum at first service were enrolled in a randomized complete block design study to evaluate treatments to synchronize estrus and ovulation. At 10 d before artificial insemination (AI), animals were randomly assigned to 1 of 3 treatments: (1) d -10 GnRH (GnRH1; 10 μg of buserelin, i.m.) and controlled internal drug release insert [CIDR, 1.38 g of progesterone (P4)]; d -3 PGF(2α) (PGF; 25 mg of dinoprost, i.m.); d -2 CIDR out; and AI at observed estrus (CIDR_OBS); (2) same as CIDR_OBS, but GnRH (GnRH2) 36 h after CIDR out and timed AI (TAI) 18 h later (CIDR_TAI); or (3) same as CIDR_TAI, but no CIDR (Ovsynch). Transrectal ultrasound was used to assess follicle size before ovulation and on d 4, 8, and 15 after the presumptive day of estrus (d 0) to measure the corpus luteum (CL). Blood samples were collected to determine concentrations of estradiol (E2; d -10, -9, -3, -2, -1, and 0) and P4 (d -10, -9, -2, -1, 0, 1, 4, 6, 8, 11, and 15). No treatment differences were observed in either circulating concentrations of P4 or the ovulatory response to GnRH1 at the onset of synchronization treatments. Circulating concentrations of P4 were greater for CIDR_OBS and CIDR_TAI compared with Ovsynch at 24 h after CIDR insertion (5.34 and 4.98 vs. 1.75 ng/mL) and immediately before CIDR removal (1.65 and 1.48 vs. 0.40 ng/mL). Peak circulating concentrations of E2 were greater for CIDR_OBS compared with Ovsynch (3.85 vs. 2.39 pg/mL), but CIDR_TAI (2.82 pg/mL) did not differ from either CIDR_OBS or Ovsynch. The interval from PGF injection to peak circulating E2 did not differ between CIDR_TAI and Ovsynch (52.1 vs. 49.8 h). Both CIDR_TAI and Ovsynch, however, had shorter intervals from PGF injection to peak circulating E2 concentrations compared with CIDR_OBS (67.8 h). The diameter of the dominant follicle before ovulation was greater for CIDR_OBS compared with Ovsynch (18.5 vs. 16.0 mm) but CIDR_TAI (17.1 mm) did not differ from either of the other treatments. The mean interval from PGF to ovulation was longer for CIDR_OBS (100.0 h) compared with CIDR_TAI and Ovsynch (84.4 and 83.2 h, respectively). Use of CIDR_OBS resulted in increased preovulatory follicle size and greater circulating concentrations of E2 due to a longer period of preovulatory follicle growth. Progesterone supplementation during synchronization and GnRH on the day before TAI affected ovulatory follicle size, and periovulatory circulating concentrations of P4 and E2. No differences, however, in postovulatory P4 or luteal volume profiles were observed.  相似文献   

13.
Three experiments were conducted to evaluate the effect of an induced first wave persistent dominant follicle on folliculogenesis and ovulatory responses induced by FSH. On d 6 of a synchronized estrous cycle (d 0 = estrus), cows were treated with a Syncromate-B implant and two injections of PGF2, (25 mg, 0700 h; 15 mg, 1900 h, i.m.). Cows in the control group retained a first-wave persistent dominant follicle, but in the aspirated group, the first-wave dominant follicle was removed via transvaginal aspiration on d 10 (d 0 = estrus). Beginning on d 12, cows received 32 mg of FSH-P i.m. in decreasing doses at 12-h intervals over a 4-d period. On d 15, the Syncromate-B implant was removed, and cows were ovariectomized (experiment 1, n = 8) or inseminated (experiment 2, n = 11) at 10 and 22 h after the onset of estrus. Cows in experiment 3 received a used controlled intravaginal drug releasing (CIDR) device and two injections of PGF2alpha (25 mg, 0700 h; 15 mg, 1900 h; i.m.) on d 6. On d 8, the first-wave dominant follicle was aspirated (n = 6) or left intact (n = 5), and FSH treatment was initiated (20 mg of Folltropin in decreasing doses at 12-h intervals over a 4-d period), and on d 10 the used CIDR device was removed from all cows. Ovarian follicle size and number were examined daily by ultrasonography from d 5 of the estrous cycle. The persistent dominant follicle increased in size from 10.7 mm on d 5 to 15.4 mm on d 10 (experiments 1 and 2), and from 9 mm on d 5 to 20.4 mm on d 11 (experiment 3). From d 11 to 14, the number of class 1 (2 to 5 mm) follicles was lower in the aspirated group than in the control group; the number of class 2 (6 to 9 mm) follicles was higher on d 12 and 13 for the aspirated group (experiments 1 and 2). The number of class 3 (> or =10 mm) follicles was higher in the aspirated group on d 14 to 16, but the same on d 17. Ovarian and embryo responses to superovulation did not differ between groups. In experiment 3, the numbers of class 1, 2, and 3 follicles, as well as ovarian and embryo responses following ovulation did not differ between groups. Initiation of exogenous FSH treatment appears to override any systemic inhibitory effect that a persistent dominant follicle may be exerting at the pituitary and possibly the ovary.  相似文献   

14.
Fifty-two lactating Holstein cows were randomly assigned to receive either a progesterone-releasing (2 g of progesterone) or a control-releasing intravaginal device (0 g of progesterone). Intravaginal devices were inserted on d 10 and removed on d 15 postpartum. Daily blood samples were collected from d 10 to 90 postpartum for subsequent determination of progesterone concentrations. Observations for estrus were conducted three times daily in a dirt paddock containing a testosterone-treated cow. Serum concentrations of progesterone in the progesterone-releasing intravaginal device group were elevated on d 11, 12, 13, 14, and 15 compared with those of the control group. The days to first post-partum ovulation were similar between the treated and control groups, respectively (30.6 vs. 30.5 d). Also similar was the proportion of cows expressing estrus at first, second, and third postpartum ovulations (9/27 vs. 3/24, 14/23 vs. 15/21, and 14/21 vs. 9/15, respectively), length of the first postpartum estrous cycle (17.9 vs. 18.3 d), and peak serum concentrations of progesterone during the first estrous cycle (3.5 vs. 2.9 ng/ml). These data indicate that administration of progesterone early postpartum did not increase the proportion of cows expressing estrus at the first ovulation.  相似文献   

15.
The objective was to monitor changes in ovarian status in heifers exposed to a progesterone insert with or without concurrent GnRH injection. Estrus was manipulated in 283 heifers (31 breeding clusters) by administering GnRH, progesterone, and PGF at 5 stages of the estrous cycle. Estrus was presynchronized with a progesterone insert (CIDR) for 7 d before PGF was administered 24 h before insert removal. Successive clusters of heifers were assigned to treatments (2 heifers per treatment) on cycle d 2, 5, 10, 15, and 18. Treatments consisted of a progesterone insert (d 0) for 7 d plus: 1) PGF on d 6, 24 h before insert removal (early PGF); 2) GnRH on d 0 + early PGF (GnRH + early PGF); 3) PGF at insert removal (late PGF); and 4) GnRH on d 0 + late PGF (GnRH + late PGF). Controls received GnRH on d 0 and PGF on d 7. Ovaries were scanned by transrectal ultrasonography on d 0, 2, 7, 9, and 11 to assess follicle diameters and ovulation. Blood was collected on d 0, 2, 6, 7, 8, and 9 to quantify serum concentrations of progesterone. Insemination occurred after detected estrus or by timed artificial insemination (TAI) at 64 h after insert removal. Only 25% of 141 GnRH-treated heifers ovulated by d 2; twice as many ovulated when treatment was initiated on d 5 (46.4%) than on other cycle days (20.3%). Diameters of the largest follicle exposed to GnRH on d 0, 2, 7, or 9 did not differ regardless of whether ovulation occurred. Small treatment and stage of cycle differences in diameter of the largest follicle were detected on d 2, 7, and 9. Compared with controls, progesterone concentration was greater in all progesterone-treated heifers on d 2 and 6. Early- vs. late-PGF treatment resulted in less progesterone on d 7 and 8. Pregnancies per AI were less after TAI (44%) than after detected estrus (56%) and were less in controls than in all progesterone treatments. Heifers in which treatments were initiated on d 10 of the cycle had the most consistent (estrus vs. TAI) pregnancies per AI (65.4%) compared with other cycle days. Compared with controls, more progesterone-treated heifers ovulated by 96 h after insert removal. Application of the progesterone insert reduced variance of the interval to estrus after insert removal (or PGF injection in controls) by 1.6-fold compared with controls. These results do not support the use of GnRH in a progesterone-based synchronization protocol.  相似文献   

16.
We previously established a bovine experimental model showing that the corpus luteum (CL) does not appear following aspiration of the preovulatory follicle before the onset of LH surge. Using this model, the present study aimed to determine the profile of follicular development and the endocrinological environment in the absence of CL with variable nadir circulating progesterone (P(4)) concentrations during the oestrous cycle in cattle. Luteolysis was induced in heifers and cows and they were assigned either to have the dominant follicle aspirated (CL-absent) or ovulation induced (CL-present). Ultrasound scanning to observe the diameter of each follicle and blood collection was performed from the day of follicular aspiration or ovulation and continued for 6 days. The CL-absent cattle maintained nadir circulating P(4) throughout the experimental period and showed a similar diameter between the largest and second largest follicle, resulting in co-dominant follicles. Oestradiol (E(2)) concentrations were greater in the CL-absent cows than in the CL-present cows at day -1, day 1 and day 2 from follicular deviation. The CL-absent cows had a higher basal concentration, area under the curve (AUC), pulse amplitude and pulse frequency of LH than the CL-present cows. After follicular deviation, the CL-absent cows showed a greater basal concentration, AUC and pulse amplitude of growth hormone (GH) than the CL-present cows. These results suggest that the absence of CL accompanying nadir circulating P(4) induces an enhancement of LH pulses, which involves the growth of the co-dominant follicles. Our results also suggest that circulating levels of P(4) and E(2) affect pulsatile GH secretion in cattle.  相似文献   

17.
Concentrations of estradiol-17 beta in follicular fluid were correlated to follicular size, stage of estrous cycle, location of corpus luteum, and presence of large follicles. Paired ovaries were obtained from 481 nonpregnant cows at slaughter and follicles were classified as ipsilateral or contralateral to the corpus luteum. Follicular fluid estradiol-17 beta concentrations from 2494 small, 1485 medium, and 396 large follicles were quantified by radioimmunoassay. Stage of estrous cycle was estimated by visual examination of the corpus luteum. Follicles in stage 1 of the estrous cycle (d 1 to 4) had the highest estradiol-17 beta concentration and the smallest mean follicular diameter. Location of follicles relative to the corpus luteum had no influence on estradiol-17 beta concentrations. As follicular size increased, concentration of estradiol-17 beta also increased. The presence of a single large follicle did not affect the concentration of estradiol-17 beta in medium or small follicles. In contrast, if multiple large follicles occurred in the same cow, concentrations of estradiol-17 beta were significantly lower in medium but not small follicles.  相似文献   

18.
Endometrial tissue was collected by biopsy from mature Holstein cows either on d 0 (estrus) or on d 9, 14, or 18 of the estrous cycle to determine the effects of day of the cycle, uterine horn, and in vitro progesterone on endometrial protein secretion. Tissue was incubated for 24 h in supplemented media containing 14C amino acids and either 0, 4.7, or 47 ng of progesterone/ml. Media were analyzed for total protein, radiolabeled protein, and profile of protein released during incubation. Endometrial tissue at d 0 released more protein than did tissue collected on all other days. Radiolabeled proteins were greater on d 0 and 18 than on d 9 and 14. Endometrium from the uterine horn contralateral to the corpus luteum released more radiolabeled protein than endometrium from the uterine horn ipsilateral to the corpus luteum. Seventeen protein bands were identified by electrophoresis. Proximity of the uterine horn to the site of ovulation affected the distribution of specific bands 21,400, 55,000, 74,600, and 88,100 molecular weight. The proportion of released proteins represented by proteins of molecular weights 12,700, 19,100, 21,400, 32,000, and 66,500 was affected either by day of the estrous cycle, proximity of uterine horn to the site of ovulation, or progesterone concentration. The results show that day of the estrous cycle and uterine horn not only alter overall endometrial protein secretion and synthetic activity but also have specific effects on distribution of individual proteins.  相似文献   

19.
《Journal of dairy science》2022,105(8):7023-7035
Double ovulation and twin pregnancy are undesirable traits in dairy cattle. Based on previous physiological observations, we tested the hypothesis that increased LH action [low-dose human chorionic gonadotropin (hCG)] before the expected time of diameter deviation would change circulating FSH concentrations, maximum size of the second largest (F2) and third largest (F3) follicles, and frequency of multiple ovulations in lactating dairy cows with minimal progesterone (P4) concentrations. In replicate 1, multiparous, nonbred lactating Holstein dairy cows (n = 18) had ovulation synchronized. On d 5 after ovulation, all cows had their corpus luteum regressed and were submitted to follicle (≥3 mm) aspiration 24 h later to induce emergence of a new follicular wave. Cows were then randomized to NoP4 (untreated) and NoP4+hCG (100 IU of hCG every 24 h for 4 d after follicle aspiration). Ultrasound evaluations and blood sample collections were performed every 12 h for 7 d after follicle aspiration. All cows were then treated with 200 μg of GnRH to induce ovulation. In replicate 2, cows (n = 16) were resubmitted to similar procedures (i.e., corpus luteum regression, follicle aspiration, randomization, ultrasound evaluations every 12 h, GnRH 7 d after aspiration). However, cows in replicate 2 received an intravaginal P4 device that had been previously used (~18 d). Only cows with single (n = 15) and double (n = 16) ovulations were used in the analysis. No significant differences were detected for frequency of double ovulation, follicle sizes, and FSH concentrations across replicates (NoP4 vs. LowP4 and NoP4+hCG vs. LowP4+hCG), so data were combined. Double ovulation was 40% for control cows with no hCG (CONT) and 62.5% with hCG (hCG). Double ovulation increased as the maximum size of F2 increased: <9.5 mm and 9.5–11.5 mm (7.7%) and ≥11.5 mm (94.1%). The hCG group had more cows with F2 > 11.5 (69%) than with 9.5 ≥ F2 ≤ 11.5 (25%) and F2 < 9.5 (6%). In agreement, F2 and F3 maximum size were larger in the hCG group, but FSH concentrations were lower after F1 > 8.5 mm compared with CONT. In contrast, FSH concentrations were greater before deviation (F1 closest value to 8.5 mm) in cows with double ovulations than in those with single ovulations, regardless of hCG treatment. In addition, time from aspiration to deviation was shorter in cows with double rather than single ovulation and in cows treated with hCG as a result of faster F1, F2, and F3 growth rates before diameter deviation. In conclusion, greater FSH and follicle growth before deviation seems to be a primary driver of greater frequency of double ovulation in lactating cows with low circulating P4. Moreover, the increase in follicle growth before deviation and in the maximum size of F2 during hCG treatment suggests that increased LH may also have a role in stimulating double ovulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号