首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A retrospective observational study was conducted using data from Dairy Herd Improvement monthly tests to investigate the association between milk urea nitrogen (MUN) concentration and milk yield, milk protein, milk fat percentage, SCC, and parity for commercial Holstein and Jersey herds in Utah, Idaho, and Montana. Mean MUN for Holstein cows was 15.5 mg/ dl (5.5 mmol/L) MUN and 14.1 mg/dl (5.0 mmol/L) for Jersey cows. Mean MUN, categorized by 30-d increments of days in milk (DIM), paralleled changes in milk values and followed a curvilinear shape. For Holstein cows, concentrations of MUN were different among lactation groups 1, 2, and 3+ for the first 90 DIM for Holsteins. Overall, concentrations of MUN were lower during for the first 30 DIM compared with all other DIM categories for both Holstein and Jersey cows. Multivariate regression models of MUN by milk protein showed that as the milk protein percentage increased, MUN concentration decreased; however, models for Jersey cows showed that MUN did not decrease significantly until above 3.4% milk protein. Milk fat percentage also decreased as MUN increased, but by only 1 mg/dl MUN over the range of 2.2 to 5.8% milk fat. Somatic cell count showed a negative relationship with MUN. Holstein cows with milk protein percentage >3.2% had lower MUN compared with cows having milk protein <3.2% for milk yields from 27.3 to 54.5 kg/d and lower than cows having a milk protein <3.0% for milk yield of 54.5 to 63.6 kg/d. In Jersey cows, MUN concentrations were not different among milk protein percentage categorized by milk yield. This study found that MUN was inversely associated with milk protein percentage and paralleled change in milk yield over time.  相似文献   

2.
The objectives of this study were to compare the multiple trait prediction (MTP) model estimate of 305-d lactation yield with the 305-d daily milk yield data from on-farm automated meters and software and to examine the accuracy of electronic identification (ID). Twenty-four-hour milk and component yields are calculated by using milk weights and samples collected 8 to 10 times/yr by Dairy Herd Improvement (DHI) organizations. Daily milk weights were collected from cows on 20 Canadian farms that used parlor milking systems with electronic ID and that were enrolled in a regular DHI program. A total of 10,175 DHI test days from 1,103 cows with complete 305-d lactation yields were entered into the MTP model, and lactation yields were predicted. Test days were grouped into first, second, and third and greater lactations and within each lactation group, days in milk were categorized in 3 stages (5 to 60, 61 to 120, and 120 to 305 d in milk) for a total of 9 classes. Agreement analysis was used to compare the 305-d sum of daily milk to the MTP 305-d lactation yield predictions by using inputs from test days throughout the lactations. Results indicated that the MTP model overestimated lactation yields across all parity groups, ranging from 310 to 1,552 kg in parity 1, 640 to 2,000 kg in parity 2, and 567 to 1,476 kg in parity 3 and greater. A preliminary examination of electronic ID accuracy was conducted on 4 farms. Two electronic ID systems were examined for cow ID accuracy by verifying the ID number appearing in the parlor with the corresponding ear tag number. There were no ID errors on 3 of 4 farms tested and only a very small number of errors (3/80) on the fourth farm, indicating that the electronic ID systems used in milking parlors identify cows accurately.  相似文献   

3.
A total of 648 purebred Holstein and 319 backcross Holstein × Jersey dairy cattle were compared for production, reproduction, health, linear type, and growth traits. Animals were born between 2003 and 2009 and were housed in the University of Wisconsin–Madison Integrated Dairy Facility. All animals had Holstein dams; lactating dams were mated to unproven Holstein sires to produce purebred (control) Holsteins or to unproven F1 Jersey × Holstein crossbred sires to produce backcross animals, whereas nulliparous dams were mated to proven Holstein sires to produce purebred (other) Holsteins. Traits were analyzed using mixed linear models with effects of season of birth, age of dam, sire, birth year of sire, days in milk, lactation, and linear type score evaluator. Control Holsteins had greater 305-d milk yield (12,645 vs. 11,456 kg), 305-d mature equivalent milk yield (13,420 vs. 12,180 kg), peak daily milk yield (49.5 vs. 46.4 kg), total lactation milk yield (11,556 vs. 10,796 kg), and daily fat-corrected milk yield (43 vs. 40 kg) compared with backcrosses. Days open and services per conception as a heifer or cow did not differ between control Holsteins, other Holsteins, or backcrosses. The proportion of first-parity births that required assistance was less in control Holsteins than in backcross cows (3.7 vs. 11.2%). The incidence of scours or respiratory problems in calves did not differ between control Holsteins, other Holsteins, and backcrosses, nor did the incidence of mastitis, injury, or feet problems. Control Holstein heifers were heavier (629 vs. 557 kg), with greater hip height (145 vs. 139 cm), body length (167 vs. 163 cm), heart girth (205 vs. 198 cm), and hip width (54 vs. 53 cm) at 22 mo of age. On a 50-point scale for linear type traits, Holsteins were larger in stature compared with backcrosses (41 vs. 28), had wider rumps (37 vs. 33), and wider rear udders (34 vs. 32). Results of this study suggest that backcross Holstein × Jersey cattle have decreased production but fail to demonstrate an advantage in health and reproduction compared with purebred Holsteins.  相似文献   

4.
The objective of the present study was to evaluate the effects of postpartum oral calcium supplementation on milk yield, energy-corrected milk yield, milk fat concentration, milk protein concentration, and somatic cell count linear score across the first 3 monthly tests postpartum, peak milk yield, risk of pregnancy at first service, and hazard of pregnancy by 150 d in milk on 1,129 multiparous Jersey and Jersey × Holstein crossbreed cows from 2 commercial dairies. After calving, cows were systematically assigned to control (no oral calcium supplementation; n = 567) or oral calcium supplementation at 0 and 1 d in milk (oral Ca; 50 to 60 g of calcium as boluses; n = 562). Monthly test milk yield, composition, and somatic cell count information was obtained from the Dairy Herd Improvement Association. Herd records were used for reproductive data. Statistical analysis was conducted using generalized multiple linear, Poisson, and Cox's hazard regressions. Treatment effects were evaluated considering cow-level information available at parturition (parity, breed, previous lactation milk yield, previous lactation length, dry period length, gestation length, body condition, and locomotion score at calving, calving ease, and calf sex). In addition, for a subset of cows serum calcium concentration before treatment administration was evaluated (n = 756). Overall, oral calcium supplementation did not affect the evaluated productive and reproductive variables. However, effects conditional to previous lactation length and calving locomotion score were observed. Milk yield and energy-corrected milk yield across the first 3 monthly tests were 1.8 kg/d higher for supplemented cows with a previous lactation length within the fourth quartile, compared with control cows on the same quartile. Energy-corrected milk yield tended to be 1.1 kg/d lower for supplemented cows with a previous lactation length within the first quartile, compared with control counterparts. Peak milk yield tended to be 1.6 kg higher for supplemented cows with a calving locomotion score ≥2, compared with control cows with the same locomotion score. Treatment effects were not conditional to serum calcium concentration before treatment administration. Our results suggest that postpartum oral calcium supplementation effects are conditional to cow-level factors such as previous lactation length and calving locomotion score in multiparous Jersey and Jersey × Holstein crossbreed cows.  相似文献   

5.
Dairy Herd Improvement records from 14 Holstein herds in San Joaquin County, CA were studied. Seven herds were milked three times a day, the other 7 twice a day. Three times daily milking significantly increased yield of 305-d fat-corrected milk. Percentage increases in production were 19.4, 13.5, 11.7, and 13.4% for cows in parity one, two, three, and four or later, respectively. Percentage of milk fat was slightly lower for cows milked three times a day compared with those milked twice a day. Cows milked three times a day had fewer days to first breeding than their twice daily counterparts. First lactation cows milked three times daily had more days to last breeding, more breedings, and consequently, more days open than cows milked twice a day. For second lactation cows milked three times a day, there was no difference in days to last breeding or days open, but they required more breedings than cows milked twice a day. Third and fourth lactation cows milked three times daily had fewer days to last breeding, no difference in number of breedings, and therefore, fewer days open than those milked twice daily. Udder health was evaluated by California Mastitis Test scores. Cows milked three times a day up to their third lactation had higher scores than those milked twice a day. Fourth and later lactation cows had a lower score than cows milked twice a day.  相似文献   

6.
Jersey × Holstein crossbred (J×H) cows (n = 24) were compared with pure Holstein cows (n = 17) for body weight, body condition score, dry matter intake (DMI), and feed efficiency during the first 150 d of first lactation. Cows were housed in the University of Minnesota dairy facility at the St. Paul campus and calved from September 2004 to January 2005. The J×H cows were mated by artificial insemination with Montbeliarde bulls, and Holstein cows were mated by artificial insemination with Holstein bulls. Cows were weighed and body condition was scored every other week. Cows were individually fed a TMR twice daily, and feed refusals were measured once daily. The DMI of cows was measured daily and averaged across 7-d periods. Milk production and milk composition were from monthly Dairy Herd Improvement records. Best Prediction was used to calculate actual production (milk, fat, protein) for each cow from the 4th to 150th day of first lactation. The J×H cows had significantly less body weight (467 vs. 500 kg) and significantly higher body condition scores (2.90 vs. 2.76) than pure Holstein cows. The J×H cows had significantly less milk production (4,388 vs. 4,644 kg) during the 4th to 150th day of lactation than did pure Holstein cows. However, fat plus protein production during the first 150 d of lactation was not significantly different for J×H (302 kg) and Holstein (309 kg) cows. The J×H and pure Holstein cows did not differ significantly for daily DMI (22.0 vs. 22.7 kg, respectively), and the J×H (4.7%) and pure Holstein (4.5%) cows consumed similar DMI based on percentage of body weight. Consequently, feed efficiency for the 4th to 150th day of lactation did not differ for J×H and pure Holstein cows.  相似文献   

7.
The effect of age and parity of dams on their daughters’ milk yield is not well known. Lactation data from 276,000 cows were extracted from the Norwegian Dairy Herd Recording System and analyzed using a linear animal model to estimate effects of parity and age within parity of dam. The 305-d milk yield of daughters decreased as parity of dam increased. Daughters of first-parity dams produced 149 kg more milk than did daughters of seventh-parity dams. We also observed an effect of age of dam within parity on 305-d milk yield of daughters in first lactation. Dams that were young at first calving gave birth to daughters with a higher milk yield compared with older dams within the same parity. The effect of age within parity of dam was highest for second-parity dams. Extensive use of heifers would have a systematic effect, and age and parity of dam should be included in the model when planning a future strategy.  相似文献   

8.
The objectives of this study were to determine the feasibility of measuring feed intake in commercial tie-stall dairies and infer genetic parameters of feed intake, yield, somatic cell score, milk urea nitrogen, body weight (BW), body condition score (BCS), and linear type traits of Holstein cows. Feed intake, BW, and BCS were measured on 970 cows in 11 Pennsylvania tie-stall herds. Historical test-day data from these cows and 739 herdmates who were contemporaries during earlier lactations were also included. Feed intake was measured by researchers once per month over a 24-h period within 7 d of 6 consecutive Dairy Herd Information test days. Feed samples from each farm were collected monthly on the same day that feed intake was measured and were used to calculate intakes of dry matter, crude protein, and net energy of lactation. Test-day records were analyzed with multiple-trait animal models, and 305-d fat-corrected milk yield, dry matter intake, crude protein intake, net energy of lactation intake, average BW, and average BCS were derived from the test-day models. The 305-d traits were also analyzed with multiple-trait animal models that included a prediction of 40-wk dry matter intake derived from National Research Council equations. Heritability estimates for 305-d intake of dry matter, crude protein, and net energy of lactation ranged from 0.15 to 0.18. Genetic correlations of predicted dry matter intake with 305-d dry matter, crude protein, and net energy of lactation intake were 0.84, 0.90, and 0.94, respectively. Genetic correlations among the 3 intake traits and fat-corrected milk yield, BW, and stature were moderate to high (0.52 to 0.63). Results indicate that feed intake measured in commercial tie-stalls once per month has sufficient accuracy to enable genetic research. High-producing and larger cows were genetically inclined to have higher feed intake. The genetic correlation between observed and predicted intakes was less than unity, indicating potential variation in feed efficiency.  相似文献   

9.
《Journal of dairy science》1988,71(10):2753-2766
Dairy Herd Improvement Association production records and farm records on clinical mastitis treatment from 1617 Holstein and Jersey cows calving between July 1980 and July 1983 on one farm in north Florida were used to evaluate the profitability of 2414 lactations. The investigation demonstrates the use of a profit function to determine the relative importance of factors influencing profitability of lactations of different breed, parity and season of calving. It serves to indicate changes that would yield the greatest financial reward by identifying major inherent economic strengths and weaknesses.Breed, parity, and season of calving accounted for less than 10% of the variation in profit per lactation. Holstein lactations were more profitable than Jersey lactations except for parity 4 lactations and for cows calving between January and June when no significant breed differences were apparent. Milk yield was the single most important determinant of profitability in Jersey lactations, regardless of parity or season of calving. Days of mastitis treatment explained more of the variation in profit per lactation than did milk yield for Holstein lactations calving between January and March and for Holstein lactations of parity greater than 4. Mastitis costs were a maximum of 8.2% of total costs for Holstein lactations of parity 6.  相似文献   

10.
The objective of our study was to identify cow-level factors associated with subclinical hypocalcemia at calving (SCH) in multiparous Jersey cows. A total of 598 Jersey and 218 Jersey × Holstein crossbreed cows from 2 commercial dairy herds were enrolled in a retrospective cohort study. Blood samples to determine total Ca concentration were collected from the coccygeal vessels at 3 h 19 min (±2 h 33 min) after calving. We used 2 serum Ca concentration thresholds to define SCH: <2.00 mmol/L (SCH-2.00) and <2.12 mmol/L (SCH-2.12). We evaluated the association of cow-level factors with SCH with multivariable Poisson regression models. Variables evaluated for association with SCH were herd; parity (2, 3, and ≥4); breed; previous lactation length and 305-d mature-equivalent milk yield; previous lactation first test milk yield and last test somatic cell count; lengths of calving interval, gestation, dry, and close-up periods; body condition and locomotion scores at calving; calving ease; and calf sex for singletons. We categorized continuous variables into quartiles (≤25th percentile, interquartile range and ≥75th percentile). The prevalence of SCH among Jersey cows was 40 (SCH-2.00) and 64% (SCH-2.12). Jersey cows of higher parity had greater risk of SCH-2.00 and SCH-2.12. The risk of SCH-2.12 was higher after birthing male calves. We also found a tendency for previous lactation length and previous lactation 305-d mature-equivalent milk yield effect to affect risk of SCH-2.12. The risk of SCH-2.12 was lower for cows that had a previous lactation length shorter than the 25th percentile compared with cows that had a previous lactation length within the interquartile range. The risk of SCH-2.12 was higher for cows that had a previous lactation 305-d mature-equivalent milk yield below the 25th percentile compared with cows that had a previous lactation 305-d mature-equivalent milk yield above the 75th percentile. Also, Jersey × Holstein crossbreed was associated with increased risk of SCH-2.00. In the multivariable analysis, we observed no association between SCH and previous lactation first test milk yield; last test somatic cell count; lengths of calving interval, gestation, dry, and close-up periods; body condition and locomotion scores at calving; and calving ease. Our study identified parity, breed, calf sex, previous lactation length, and previous lactation 305-d mature-equivalent milk yield as cow-level factors associated with SCH in multiparous Jersey cows.  相似文献   

11.
Dairy Herd Improvement Association sample-day data were analyzed 1) to explain variation of month-to-month differences of single milking yields and fat percents and 2) to develop adjustment factors for estimating daily yield and fat tests from a single milking. Prior to analyses, single sample data were adjusted for month-to-month differences determined from standard two sample data. Guernsey and Holstein data involving 1,632 and 16,784 cows were available in the single sample files. Analyses were separate for Guernseys and Holsteins and for yield and test. Regression equations involving from 13 to 16 independent variables accounted for proportions of variance of the dependent variable ranging from .31 to .48 for the four combinations of breed and trait. Regression equations for adjustment of Dairy Herd Improvement Association single sample data were developed. Each equation included only two independent variables for adjustment purposes. Those equations developed from Holstein data have been implemented by the Pennsylvania Dairy Herd Improvement Association to adjust single sample data for all breeds.  相似文献   

12.
The relationship between cow evaluations from a 305-d lactation yield animal model [i.e., lactation model (LM)] and a random regression model (RRM) were studied using the first-lactation milk yield of 2,477,807 Holstein heifers. In the LM analysis, 2 values of heritability were used, 0.35 (LM1-H) or 0.57 (LM2-H), the latter being equal to that used in the random regression model for the analysis of the Holstein test-day records (RRM-H). The relative weights on parent average (PA) and yield deviations (YD) were computed and studied to understand factors contributing to reranking of cows’ predicted transmitting abilities (PTA) from the various models. The degree of relatedness and inbreeding were calculated for the top 2,000 cows from the various models. Analyses of Jersey milk yield in the first 3 parities was implemented using 305-d lactation yield multivariate animal (MLM-J) and random regression models (MRRM-J). The ability of both models using only first-parity yield records to predict evaluations in second and third parities when records for these later parities were excluded was studied in a sample of cows. The correlations of cow PTA between LM1-H or LM2-H and RRM-H were 0.91 and 0.92, respectively, in the Holstein data. The data sets used were identical in this case for all models in terms of number of cows and yield records. The correlations were slightly lower at 0.89, 0.87, and 0.88 for parities 1, 2, and 3 in the Jersey analyses, where the data sets were not identical. The relative weights on PA and YD were 0.28 (0.11) and 0.72 (0.89), respectively, from the LM2-H (RRM-H). The RRM-H placed more emphasis on YD and therefore on Mendelian sampling deviations. Thus, the top 2,000 cows from the RRM-H were less related and inbred. The average additive genetic relationship was 22% greater in the LM2-H and average inbreeding coefficients were 0.68 and 0.43% for the LM2-H and RRM-H, respectively. When records were initially available in the first parity, the MRRM-J predicted PTA in parities 2 and 3 with about 2 to 7% greater accuracy compared with the MLM-J.  相似文献   

13.
Three technologies that increase milk production per cow and that are available to dairy producers are bovine somatotropin, three times daily milking, and extended daily photoperiod. Dairy herds fed according to National Research Council requirements were simulated to predict the impact of these technologies on N losses to manure and to water resources. Because Dairy Herd Improvement Association total lactation records (n = 93,080) revealed a positive linear relationship between 305-d milk production and calving interval, calving intervals were predicted to increase with the use of technologies and to result in a change in the ratio of lactating cows to growing heifers in a herd. Compared with a herd using no technologies, the use of bovine somatotropin, three times daily milking, or extended photoperiod were predicted to reduce herd N excretion per unit of milk by 7.8, 7.0, and 3.6%, respectively. When the use of all three technologies was simulated, N losses to manure were decreased by 15.7% when assuming calving interval increases from the technologies or 15.4% without accounting for calving interval increases. Reductions in feed N requirements and manure N losses with these three technologies were predicted to reduce environmental N loading by up to 16%.  相似文献   

14.
Milks from commercial dairy herds in Southeastern Pennsylvania were analyzed for total protein, casein, whey protein, beta-lactoglobulin, nonprotein nitrogen, and lactose contents. Data for fat contents and milk yields were from Dairy Herd Improvement Association records for the same lactation. Milk samples were from a single milking of healthy cows (151) in midlactation. Since the remainder of the milk was returned to the bulk milk of the farm, the data represent market milk composition. The data were grouped and analyzed by breed and beta-lactoglobulin phenotype; there were 18 to 33 cows per breed. In true protein percentage, the breeds ranked: Jersey 4.07 plus or minus .49, Brown Swiss 3.84 plus or minus .47, Guernsey 3.56 plus or minus .53, Ayrshire 3.30 plus or minus .52, Milking Shorthorn 3.17 plus or minus .47, Holstein 3.07 plus or minus .43. Breeds differed in all other components and in milk yield. Brown Swiss ranked highest in yield of protein. Only whey protein and beta-lactoglobulin contents were influenced by the beta-lactoglobulin genotype with beta-lactoglobulin A greater than AB greater than B in whey protein content.  相似文献   

15.
16.
The objective was to describe the dynamics of culling risk with disposal codes for Holstein dairy cows reported by herds enrolled in the Dairy Herd Improvement program. Dairy producers could report 1 of 9 possible disposal codes or forego reporting a code. After edits, 3,629,002 lactation records were available for cows calving between 2001 and 2006 in 2,054 herds located in 38 states primarily east of the Mississippi river. The distribution of culled cows by disposal code was estimated by parity, days after calving, pregnancy status, cow-relative 305-d mature equivalent milk yield, herd-relative 305-d mature equivalent milk yield, and season. Of all herds, 57% reported all 8 different disposal codes excluding the codes dairy purposes and reason not reported. Hazard (risk) functions were calculated by parity, from 1 to 520 d since calving for open cows and from 1 to 280 d since conception for pregnant cows. Annualized live culling rate and death rate (reported code was death) were 25.1 and 6.6%, respectively. The primary disposal code was died (20.6% of all culling), followed by reproduction (17.7%), injury/other (14.3%), and low production and mastitis (both 12.1%). The risk of culling with various disposal codes varied with stage of lactation. Died and reproduction were the most frequently reported codes for cows leaving the herd during early and late lactation, respectively. Early lactation was also a critical period for culling with the disposal codes injury/other and disease, and the risk increased with days after calving for the codes low production and reproduction. The risk of culling with the disposal code died showed the greatest seasonal pattern with increased risk of death in spring and summer. A negative association was found between annualized live culling and death rates within herds. Compared with open cows, pregnant cows had a lower risk of culling with all reported disposal codes. In addition, the risk of culling was lower in high-producing cows with all disposal codes. In conclusion, the risk for culling by disposal code varied by parity, stage of lactation, season, pregnancy status, and milk yield.  相似文献   

17.
《Journal of dairy science》1986,69(3):863-868
Twenty-eight California Holstein dairy herds were on twice daily milking for 3 to 17 mo and for 36 mo on three times daily milking. Effect of three times daily milking on yields of milk, fat-corrected milk, fat, and solids-not-fat, udder health, and reproductive performance was evaluated using Dairy Herd Improvement monthly herd summaries. Data for all cows in the herd and for first lactation cows were analyzed separately. Milk yield for the entire herd increased 12% above previous production on twice daily milking. Fat and solids-not-fat percentages were not affected by three times daily milking. First lactation cows milked three times daily yielded 14% more milk over previous twice daily levels. Fat percent was lower for first lactation cows on three time milking, but solids-not-fat percent did not change. Response to three time milking was not related to herd size or production while on twice daily milking. Udder health, evaluated by California Mastitis Test scores, and reproductive indexes were not affected by milking frequency.  相似文献   

18.
Use of milk urea (MU) concentration as a parameter for detection of nutritional imbalances requires identification and quantification of nutritional and nonnutritional factors that influence it. The objective of this study was to assess the relationship between live body weight (BW) and MU concentration in Holstein cows. Results for the test-day measurements at 7 dairy farms were obtained from the Israeli Dairy Herd Improvement Center and concomitant cow weights were registered in local computerized weighing systems. A total of 1996 cows and 25,485 records were studied. The overall unadjusted per-cow mean MU nitrogen concentration and BW were 15.3 mg/dL (SD = 3.8) and 593 kg (SD = 84), respectively. The linear association between BW and MU was negative and highly significant and the quadratic component of BW had a highly significant positive association with MU. There was a significant interaction between the association of MU and BW with lactation number. Sampling month, milk yield, milk fat percentage, and somatic cell count accounted for significant variation in MU. Predicted MU concentrations at different BW values were calculated for each parity group, by setting equations that included the estimates of the variables associated with MU and constant values (lactation averages) for the independent variables, with the exception of BW. Plotting of results showed exponential characteristics for the relationship between BW and predicted MU concentrations. At any of the considered BW, predicted MU concentrations were lower for first-parity cows. The trends and interactions found in the present study may contribute to improving accuracy of models designed to calculate urinary nitrogen excretion rates and normative milk urea concentrations.  相似文献   

19.
In the United States, lactation yields are calculated using best prediction (BP), a method in which test-day (TD) data are compared with breed- and parity-specific herd lactation curves that do not account for differences among regions of the country or seasons of calving. Complete data from 538,090 lactations of 348,123 Holstein cows with lactation lengths between 250 and 500 d, records made in a single herd, at least 5 reported TD, and twice-daily milking were extracted from the national dairy database and used to construct regional and seasonal lactation curves. Herds were assigned to 1 of 7 regions of the country, individual lactations were assigned to 3-mo seasons of calving, and lactation curves for milk, fat, and protein yields were estimated by parity group for regions, seasons, and seasons within regions. Multiplicative pre-adjustment factors (MF) also were computed. The resulting lactation curves and MF were tested on a validation data set of 891,806 lactations from 400,000 Holstein cows sampled at random from the national dairy database. Mature-equivalent milk, fat, and protein yields were calculated using the standard and adjusted curves and MF, and differences between 305-d mature-equivalent yields were tested for significance. Yields calculated using 50-d intervals from 50 to 250 d in milk (DIM) and using all TD to 500 DIM allowed comparisons of predictions for records in progress (RIP). Differences in mature-equivalent milk ranged from 0 to 51 kg and were slightly larger for first-parity than for later parity cows. Milk and components yields did not differ significantly in any case. Correlations of yields for 50-d intervals with those using all TD were similar across analyses. Yields for RIP were slightly more accurate when adjusted for regional and seasonal differences.  相似文献   

20.
Feeding trials were conducted in two commercial dairy herds to evaluate the addition of .8% sodium bicarbonate to alfalfa hay-based diets. Approximately half of each herd served as controls and the other half was fed the same diet with sodium bicarbonate. A total of 1280 Dairy Herd Improvement Association lactation records were obtained in the two herds during the trials. Cows in herd 1 were milked three times daily and cows in herd 2 were milked twice daily. In herd 1, milk production from control and bicarbonate groups was: first lactation cows, 7491 and 7748 kg/cow; second lactation cows, 8363 and 8791 kg/cow; and third and higher lactation cows, 8713 and 9562 kg/cow. There were no differences in milkfat or solids-not-fat percentages between treatment groups. In herd 2, milk production from control and bicarbonate groups was: first lactation cows, 6800 and 7158 kg/cow; second lactation cows, 8487 and 8082 kg/cow; and third and higher lactation cows, 8807 and 8216 kg/cow. First lactation cows fed sodium bicarbonate had a lower milk fat percentage than controls. There were no other differences in milk fat or solids-not-fat percentages between treatment groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号