首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决大型装备电焊和电镀装置的大电流量值传递及在线校准的难题,研制了一种反射式Sagnac型光纤电流互感器样机(光纤宽带大电流测量仪)。采用了线性双折射抑制、温敏变比自补偿、数字闭环信号检测等关键技术,对柔性光纤敏感头进行了优化设计。对样机进行了主要技术性能验证测试,试验结果表明,在所述试验条件下的测量准确度优于±0.2%,温度、振动、磁场变化下变比误差皆小于±0.2%,频率响应1kHz衰减0.14%,-3dB带宽大于10kHz,验证了测量仪的可靠性及在线校准大电流的适用性。样机测量结果的相对扩展不确定度为0.10%,测量仪的精度等级达到了0.2级。  相似文献   

2.
Shi J  Xiao S  Bi M  Yi L  Yang P 《Applied optics》2012,51(14):2733-2738
A simple fiber-optic sensor capable of discrimination between temperature and strain is proposed and experimentally demonstrated. The sensor head is formed by cascading two sections of single-mode thin-core diameter fibers (TCFs) that act as two different inter-modal interferometers (IMIs). Due to the different sensitivity responses of the two IMIs to strain and temperature, it is possible to discriminate temperature and strain by monitoring the resonant wavelength shifts. The experimental results indicate that the measured strain and temperature resolutions are 37.41 με and 0.732 °C within a strain range of 0-1333.3 με and a temperature range from 26.9 °C to 61.7 °C. The sensing sensitivities of strain and temperature are -1.03 pm/με and 30.74 pm/°C, respectively. The proposed sensor features the advantages of easy fabrication, low cost and high sensitivity, and it exhibits great potential in dual-parameter measurement.  相似文献   

3.
曲面间隙测量电涡流传感器探头的性能研究   总被引:1,自引:0,他引:1  
针对曲面间间隙测量的实际应用,从电涡流传感器的检测原理出发,对传感器探头的测量性能进行了研究.在平面线圈磁场分布计算的基础上,通过修正得到了曲面线圈的磁场分布规律,进而对线圈的测试性能进行分析和预测,实现了线圈参数的优化设计.同时,对曲面测量的各种影响因素进行了分析和试验验证,为电涡流传感器应用于曲面测量提供参考和依据.  相似文献   

4.
Dong B  Hao J  Liaw CY  Lin B  Tjin SC 《Applied optics》2010,49(32):6232-6235
An all-fiber sensor scheme for simultaneous strain and temperature measurement is presented. The sensing head is formed by serially connecting a polarization maintaining photonic-crystal-fiber-based inter-modal interferometer (IMI) with a fiber Bragg grating (FBG). The IMI, exhibiting an opposite strain response as compared to that of the FBG, is highly sensitive to strain, while it is insensitive to temperature. This has potential for improving the strain and temperature measurement resolutions. A sensor resolution of ±8.3 με in strain and ±2 °C in temperature are experimentally achieved within a strain range of 0-957.6 με and a temperature range of 24 °C-64 °C, respectively.  相似文献   

5.
针对变压器工频短路电流测量需求,研究了外积分式罗氏线圈技术和光纤电流传感技术。建立了2种传感器的低频数学模型,基于MATLAB/Simulink仿真计算传感器对工频短路电流的响应特性,结果表明:罗氏线圈对工频短路电流的测量精度受其下截止频率影响,下截止频率越低,测量精度越高;光纤电流传感器理论上可以精确复现工频短路电流。采用多种电流传感器进行变压器工频短路电流现场对比测试,结果表明:电流比较仪、光纤电流传感器及下截止频率为0.02Hz的罗氏线圈测得的电流波形吻合较好,而下截止频率为0.2Hz的罗氏线圈测量结果出现了明显的偏移,且无法归零,与仿真分析结论基本一致。对于外积分式罗氏线圈,为保证高精度测量,建议下截止频率应低于0.1Hz;光纤电流传感器具有极好的直流及低频响应特性,是工频短路电流高精度测量的理想方案。  相似文献   

6.
Numerical multiphysics modeling of the photoinductive imaging (PI) effect was performed with a 2-D transient to characterize corner cracks at the edge of a specimen with a bolt hole. We present how the finite-element method (FEM) can be utilized to model the PI effect and observe the influence of critical factors on the coil probe impedance for a rectangular crack in the Ti-6Al-4V specimen. As anticipated, the proposed model can show that the PI method has a higher spatial resolution in the defect in 2-D models compared to the conventional eddy current testing method. The FEM simulation results for 0.25-, 0.50-, and 0.75-mm rectangular notches are shown and discussed. The effects of coil current frequency, laser-point temperature, and lift-off distance on the PI signal are also examined and analyzed. We demonstrate that the PI effect is a novel sensing method for characterizing the geometric shape of cracks and that the enhanced output signals of the coil probe can also be obtained given an appropriate quantity of factors.   相似文献   

7.
This article describes a mass-producible electronic thermometer employing an inexpensive transistor as a temperature sensor. The instrument features ±0.1°C accuracy from -50 to + 125°C; ±0.02°C stability throughout a 1000-day 125°C temperature cycle test; and probes that are freely interchangeable with no calibration by user. Probes need be factory-calibrated at only one temperature, and are based on a novel low-thermal-mass hermetic transistor package. Also described are the theoretical analysis and experiments carried during development. It is shown that sensor transistor Vbe will vary almost linearly with temperature if collector current is an appropriate quadratic function of absolute temperature. Effects of various current functions on Vbe linearity are theoretically analyzed and experimental results given for comparison. The technique used to find the optimum current function is explained, and the circuit which generates the function is described. It is shown that using a more expensive function generator and a 3-point sensor calibration will yield ±0.01°C accuracy. Also discussed is the degree to which different commercially available transistors conform to the theoretical predictions. Criteria are given for selecting an appropriate transistor type.  相似文献   

8.
Li C 《Applied optics》2011,50(27):5315-5320
An optical stress sensor is proposed by using a single crystal with both electro-optic and photoelastic effects. Different from previous crystal-based stress sensors, the proposed sensor is based on electro-optic compensation for stress-induced birefringence and does not need an additional quarter-wave plate or modulator, because the stress-sensing element is simultaneously used as an electro-optic compensator. Candidate sensing materials include electro-optic crystals of the 3?m symmetry group and all glass with large Kerr coefficients. A primary experiment has demonstrated that the stress-induced birefringence in lithium niobate crystal can be compensated by its electro-optic birefringence. The proposed stress sensor is compact and low cost, and it is possible to achieve closed-loop stress measurement.  相似文献   

9.
A novel fiber-optic current sensing element is proposed to enhance sensor performance using spun high-birefringence fibers. Such element includes three fiber sections. Two terminal sections with a varying spin rate along the fiber are utilized to replace the fiber quarter-wave plates, each converting the light polarization state from linear to circular and vice versa. The middle section with a uniform spin rate is utilized as the current sensing fiber that maintains the circular polarization state during the light propagation. The fiber is also wound into a special geometric structure so that the Sagnac phase shift can be inherently eliminated, and the sensing result does not depend on the position of the current conductor. The evolution of the light polarization state was analyzed using coupled-mode theory with different polarization state incidents in the sensing fiber. A sensor scheme based on this type of spun fiber is also proposed.  相似文献   

10.
A temperature sensor with high sensitivity based on the birefringence induced Vernier effect in a symmetrical metal-cladding waveguide (SMCW) structure is theoretically proposed. Due to the guiding layer of SMCW is extended to a sub-millimeter scale, the excited ultra-high order modes is highly sensitive to the variation of thermally modulated refractive index (RI) and the obtained comb-like resonance reflectivity spectrum shifts accordingly as changing the ambient temperature. There is a little difference between the RI of the ordinary light and the extraordinary light of the filled nematic liquid crystal (LC), the resulted slight different free spectral range of two orthogonal polarizations makes their superposition of reflectivity spectrum metamorphose into a period envelope with multiple sub-peaks. The dips in the fitting upper envelope possesses a much enhanced temperature dependent spectrum shift which can be measured by a low-cost integrated-type micro-spectrometer. Such a sensor has no reference resonant cavity and its sensing range can be easily controlled by filling with different kinds of LC.  相似文献   

11.
Li M  Li Y 《Applied optics》2011,50(2):231-236
The interaction of a large temperature-dependent refractive index and a temperature-dependent absorption of semiconductor materials at 1550 nm can be used to build a very sensitive, film coated fiber-optic temperature probe. We developed a sensor model for the optical fiber-germanium film sensor. A temperature sensitivity of reflectivity change of 0.0012/°C, corresponding to 0.1°C considering a moderate signal processing system, over 100°C within the temperature regime of -20°C to 120°C, has been demonstrated by experimental tests of the novel sensor. The potential sensitivity and further applications of the sensor are discussed.  相似文献   

12.
In this paper, we present a universal readout system, which can be used to decode polarimetric fiber-optic sensors based on highly birefringent fibers. All such sensors use the same sensing principle, relying upon the dependence of modal birefringence on different physical parameters. To register the measurand-induced phase changes between polarization modes, we use the coherence-addressing principle. This requires that the interrogated sensor be powered by a broadband source (superluminescent diode) and that the total optical path delay introduced by the sensor be balanced in the decoding interferometer. The system performance in decoding elongation, temperature and hydrostatic pressure sensing is demonstrated.  相似文献   

13.
This paper presents experimental results characterizing the electrical properties of metallic foams, a relatively new class of material, using nondestructive eddy current sensing techniques. The fundamentals of eddy current sensing, which is based on electromagnetic induction, are described, and the effects on coil impedance change of the representative types of coil sensors are analyzed. It has been found that the phase-frequency response of the normalized eddy current signal of the sensor is relatively immune to coil-to-sample spacing and fill-factor variations, from which key results such as the equivalent conductivity and the porosity of the foams are presented. The paper demonstrates the broad applicability of this technique in characterizing and further recognizing the properties of a variety of sample shapes used.  相似文献   

14.
Time-domain Electro Magnetic (TEM) systems, are used for remote sensing of conductive mineral deposits buried under the surface of the earth. A low frequency trapezoidal current excitation set-up in an exciter coil loop causes a flux that penetrates deep into the earth. When the excitation is cut off sharply, conductive deposits in the earth carrying flux react by causing eddy current flows within them. The flux produced by such eddy currents is picked up by a sensor coil. By comparing the emf induced in the sensor coil with a priori known emf patterns for mineral deposits, the presence of mineral deposits can be ascertained. The voltage, current and energy levels of the TEM system, require special type of excitation technique. Power converters for such non-standard requirements are not reported in the literature, particularly for TEM applications. This paper introduces TEM systems to the reader and presents the requirements for excitation. A converter topology to meet the requirements, it’s analysis, control and performance are presented. Among other alternatives that the authors have attempted, the topology presented features reduced number of passive elements, high voltage gain and low losses. These features enable the sensor head to be operated from the normal low level battery.  相似文献   

15.
Fiber optic pressure sensing with conforming elastomers   总被引:1,自引:0,他引:1  
Shao LY  Jiang Q  Albert J 《Applied optics》2010,49(35):6784-6788
A novel pressure sensing scheme based on the effect of a conforming elastomer material on the transmission spectrum of tilted fiber Bragg gratings is presented. Lateral pressure on the elastomer increases its contact angle around the circumference of the fiber and strongly perturbs the optical transmission of the grating. Using an elastomer with a Young's modulus of 20 MPa, a Poisson ratio of 0.48, and a refractive index of 1.42, the sensor reacts monotonically to pressures from 0 to 50 kPa (and linearly from 0 to 15 kPa), with a standard deviation of 0.25 kPa and maximum error of 0.5 kPa. The data are extracted from the optical transmission spectrum using Fourier analysis and we show that this technique makes the response of the sensor independent of temperature, with a maximum error of 2% between 25°C and 75°C. Finally, other pressure ranges can be reached by using conforming materials with different modulii or applying the pressure at different orientations.  相似文献   

16.
The design of an optical current sensor to be used in a pulsed power generator is presented. The current sensor is based on the polarization rotation by the Faraday effect. GEPOPU is a pulsed power generator, 110 kA, 120 ns double transit time, 1.5 Ω coaxial geometry, and current rise time of 50 ns. Two different optical geometries surrounding the conductor were tried, using Amici roof prism and pentaprism to go around the current once, as a way to preserve the state of polarization along the optical path by means of complementary reflections within the sensing element. We believe this to be the first time that such large and rapidly varying currents have been measured with this configuration. The values obtained for both geometries agree with the values obtained with a Rogowski coil. The traces obtained are completely noise-free and no significant time lag has been observed between the current determined from the Faraday rotation and the current measured using a Rogowski coil.  相似文献   

17.
Solid Zn and V nanoparticles (NPs) embedded in silica were elongated by swift heavy ion (SHI) irradiation with 200 MeV Xe(14+) ions to a fluence of 5.0 × 10(13) ions cm(-2). Isochronal annealing was carried out in a vacuum from 200 to 1000 °C in steps of 100 °C for 10 min each. The degree of shape elongation was evaluated at room temperature (RT) by two different optical methods: linear dichroism spectroscopy and birefringence spectroscopy. In the as-irradiated state, the samples showed an absorption band at 5 eV due to radiation-induced defects in the silica in addition to the anisotropic absorption due to the elongated metal NPs. After annealing at 400 °C the defect band had completely disappeared, while the degree of shape elongation was almost unchanged or rather slightly increased in both the Zn and V NPs. The elongation of the Zn NPs slightly decreased but maintained a certain value after annealing at 500 °C, which is much higher than the melting point (MP) of Zn NPs (~420 °C). This observation indicates that shape elongation is mostly maintained even if the Zn NPs are in the molten state to some extent during annealing. The elongation of the Zn NPs was almost eliminated after annealing at 600 °C. In the case of the V NPs, elongation was maintained up to 800 °C but mostly eliminated at 900 °C. Since the recovery temperature of 900 °C from the elongated to the spherical shape is much lower than the MP of bulk V (1890 °C), we consider that the elongation is eliminated without melting of V NPs, i.e. via solid state mass transportation. The melting of NPs is not the key factor for the recovery to the spherical shape.  相似文献   

18.
A commercially available magnetic reluctance sensor is used to determine the angular velocity of turbocharger impeller blades from outside the aluminum housing. Eddy currents are induced in the aluminum blades by blade motion through the magnetic field projected by an externally mounted Samarium-Cobalt permanent magnet. Experiments show that secondary eddy currents and associated ac magnetic fields generated in the aluminum housing provide the prime excitation for a sensor coil located outside the housing. The coil output voltage spectrum shows a strongly peaked structure with peak locations at multiples of the blade passage frequency in the range 1-10 kHz. The sensor output signal decreases with increasing frequency above 2 kHz because of increasingly effective attenuation by the housing. Test results show that a circuit designed to track the blade signal gives an analog voltage output proportional to the frequency of blade passage over the operating range of the Cummins VT-903 and Detroit 8V-71T turbocharged diesel engines. Suggestions are made for the design of a sensor appropriate for both magnetic reluctance and eddy current sensing applications.  相似文献   

19.
High temperature luminescence-based sensing is demonstrated by embedding colloidal CdSe(ZnS) quantum dots into a high temperature SiO(2) dielectric matrix. The nanocomposite was fabricated by a solution process method. As-prepared CdSe(ZnS) quantum dots in the nanocomposite sensor show an absorption band at a wavelength of 600 nm (2.06 eV). Photoluminescence (PL) measurements show a room temperature emission peak at 606 nm (2.04 eV). The temperature-dependent emission spectra study shows for the first time a CdSe(ZnS)-SiO(2) nanocomposite-based high temperature sensor. The temperature-dependent spectral and intensity modes of the nanocomposite thin film photoluminescence were investigated from 295-525 K. The sensor shows a variation of the emission wavelength as a function of temperature with a sensitivity of ~ 0.11 nm °C( - 1). The film morphology and roughness are characterized using AFM.  相似文献   

20.
介绍了基于大阻尼比的双输出振动传感器的结构原理和技术性能。将电容传感和大阻尼比动圈传感技术相结合,在一个振动传感器上实现了可同时测量加速度和速度两种振动参量。利用大阻尼比动圈换能技术拓宽了传感器的频率特性和扩大了测量量程,且两种传感输出具有相同的幅频特性和相位特性。给出了系统运动方程,导出了振动传感器测量振动加速度和速度两种参量的频率特性和灵敏度。用此技术研制的双输出传感器可用于土木水利工程的低频和超低频振动测量,为工程振动测量提供了一种新仪器。也可用于强地震观测,弥补了单一强震加速度观测的不足,超低频强震速度测量可获取更加丰富地震信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号