首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our objective was to evaluate the effect of manipulating progesterone (P4) concentrations before timed artificial insemination (TAI) on reproductive and endocrine outcomes in high-producing Holstein cows. Multiparous lactating Holstein cows (n = 80) were synchronized for first TAI using a Double-Ovsynch protocol and were randomly assigned to receive 25 mg of PGF 1 d after the first GnRH treatment of the Breeding-Ovsynch protocol that included a once-used P4 insert (low-P4 group) or to receive 2 new P4 inserts during the Breeding-Ovsynch protocol (high-P4 group). Blood samples were collected thrice weekly from ?10 to 32 d relative to TAI for all cows and from 32 to 67 d after TAI for pregnant cows and were analyzed for P4 and pregnancy-specific protein B (PSPB) concentrations. Expression of IFNτ-stimulated gene 15 (ISG15) was assessed in blood leukocytes 18 and 20 d after TAI. As expected, P4 concentrations were greater for high-P4 cows than for low-P4 cows from 3 to 8 d before TAI. Incidence of double ovulation was 3-fold greater for low-P4 cows than for high-P4 cows (33 vs. 10%), which resulted in more twin pregnancies 32 d after TAI for low-P4 cows than for high-P4 cows (29 vs. 0%). Low-P4 cows had larger preovulatory follicles at the last GnRH treatment of the Double-Ovsynch protocol and greater P4 concentrations than high-P4 cows after TAI. Relative expression of ISG15 mRNA 18 and 20 d after TAI was greater for low-P4 cows than for high-P4 cows and for pregnant cows than for nonpregnant cows. Overall, PSPB concentrations tended to be greater for low-P4 cows than for high-P4 cows, and pregnant cows had greater P4 concentrations than nonpregnant cows. In summary, cows with low P4 before TAI had increased preovulatory follicle diameter, PSPB concentrations, relative expression of ISG15 mRNA 18 and 20 d after TAI, double ovulations, and twinning compared with cows with high P4 before TAI. Increasing P4 before TAI may effectively decrease double ovulation and twinning in high-producing multiparous Holstein cows.  相似文献   

2.
《Journal of dairy science》2023,106(6):4413-4428
This study aimed to determine the effect of circulating progesterone (P4) concentrations produced by a corpus luteum (CL) or released by an intravaginal P4 implant (IPI) on GnRH-induced LH release, ovulatory response, and subsequent CL development, after treatment with 100 μg of gonadorelin acetate (GnRH challenge). Nonlactating multiparous Holstein cows were synchronized and GnRH was used to induce ovulation (d −7). Over 4 replicates, cows that ovulated (n = 87) were randomly assigned to a 2 × 2 factorial arrangement (presence or absence of CL and insertion or not of an IPI at GnRH challenge), creating 4 groups: CL_IPI, CL_NoIPI, NoCL_IPI, and NoCL_NoIPI. On d −1.5, NoCL_IPI and NoCL_NoIPI received 2 doses of 0.53 mg of cloprostenol sodium (PGF), 24 h apart to regress CL. On d 0, cows were treated with 100 μg of GnRH and, simultaneously, cows from IPI groups received a 2-g IPI maintained for the next 14 d. Diameter of dominant follicle, ovulatory response, and subsequent CL volume were assessed by ultrasonography on d −1.5, 0, 2, 7, and 14. Blood samples were collected on d −1.5, 0, 1, 2, 3, 5, 7, and 14 for analysis of circulating P4 and at 0, 1, 2, 4, and 6 h after GnRH challenge for analysis of circulating LH. In a subset of cows (n = 34), the development of the new CL was evaluated daily, from d 5 to 14. The presence of CL at the time of GnRH challenge affected the LH peak and ovulatory response (CL: 5.3 ng/mL and 58.1%; NoCL: 13.2 ng/mL and 95.5%, respectively). However, despite producing a rapid increase in circulating P4, IPI insertion did not affect LH concentration or ovulation. Regardless of group, ovulatory response was positively correlated with LH peak and negatively correlated with circulating P4 on d 0. Moreover, new CL development and function were negatively affected by the presence of CL and by the IPI insertion. In summary, circulating P4 produced by a CL exerted a suppressive effect on GnRH-induced LH release and subsequent ovulation of a 7-d-old dominant follicle, whereas the IPI insertion at the time of GnRH had no effect on LH concentration or ovulation. Finally, elevated circulating P4, either from CL or exogenously released by the IPI, compromised the development and function of the new CL, inducing short cycles in cows without CL at the time of GnRH treatment.  相似文献   

3.
The primary objective was to determine the variability and repeatability of GnRH-induced LH responses. The secondary objective was to evaluate the associations among plasma LH, FSH, estradiol (E2), and progesterone (P4) concentrations. One hundred lactating Holstein cows (35 primiparous, 65 multiparous) were initially subjected to a presynchronization protocol (d 0, PGF; d 3, GnRH) followed 7 d later by Ovsynch (d 10, GnRH; d 17, PGF; 56 h later, GnRH) and timed artificial insemination 16 h after the last GnRH. Blood samples were collected immediately before the GnRH injection of presynchronization and the second GnRH of Ovsynch to determine plasma concentrations of LH, FSH, and P4. A second blood sample was collected 2 h after each of the above GnRH injections to determine GnRH-induced LH and FSH concentrations. Plasma concentrations of E2 were also determined in samples collected immediately before the second GnRH of Ovsynch. Cows that (1) had higher LH concentrations at 0 h than at 2 h after GnRH, (2) showed an ongoing spontaneous LH surge, (3) did not respond to GnRH, and (4) had P4 ≥ 0.5 ng/mL at GnRH of presynchronization and the second GnRH of Ovsynch were excluded from the analysis. The variability (coefficient of variation) and repeatability [between animal variance/(within animal variance + between animal variance)] of GnRH-induced LH response were determined from samples collected 2 h after the GnRH of presynchronization and the second GnRH of Ovsynch. The associations among plasma LH, FSH, E2, and P4 were determined at the second GnRH of Ovsynch. Mean (±SEM) LH concentrations before GnRH were 0.5 ± 0.04 and 0.6 ± 0.03 ng/mL, whereas mean LH concentrations 2 h after GnRH were 9.8 ± 1.0 and 12.1 ± 0.8 ng/mL at GnRH of presynchronization and the second GnRH of Ovsynch, respectively. The variability of GnRH-induced LH was 76.1 and 52.1% at GnRH of presynchronization and the second GnRH of Ovsynch, respectively. The repeatability estimate for GnRH-induced LH concentration between GnRH of presynchronization and Ovsynch assessments was 0.10. Plasma concentrations of LH were positively associated with FSH and E2 (r = 0.61 and 0.30, respectively) and negatively associated with P4 (r = ?0.46) at the second GnRH of Ovsynch. In summary, GnRH-induced LH responses were highly variable and unrepeatable, and LH concentrations were positively associated with FSH and E2 and negatively associated with P4.  相似文献   

4.
Our objective was to compare the effect of treatment with GnRH at the first treatment (G1) of the Breeding-Ovsynch portion of a Double-Ovsynch (DO) protocol with human chorionic gonadotropin (hCG) on pregnancies per artificial insemination (P/AI) in lactating dairy cows. In experiment 1, lactating dairy cows (n = 1,932) submitted to a DO protocol for first timed artificial insemination (TAI) on 2 commercial dairy farms were blocked by parity (primiparous vs. multiparous) and were randomly assigned to receive 100 µg of GnRH versus 2,500 IU of hCG at G1. Overall, P/AI 39 d after TAI for cows inseminated with sexed dairy semen was greater for cows treated with GnRH than for cows treated with hCG within each parity (primiparous: 42.6% vs. 38.2%; multiparous: 39.4% vs. 30.3%). Similarly, P/AI 39 d after TAI for multiparous cows inseminated with conventional beef semen tended to be greater for cows treated with GnRH than for cows treated with hCG (41.1% vs. 34.3%). In experiment 2, lactating Holstein cows (n = 43) were blocked by parity and were randomly assigned to the treatment protocols described for experiment 1. Ovaries were evaluated with transrectal ultrasonography immediately before treatment and 24, 28, 32, 36, and 40 h after treatment to assess time from treatment to ovulation, and blood samples were collected immediately before G1, at the first PGF treatment, 8 and 16 h later, at the second PGF treatment, 8 and 16 h later, at the second GnRH (G2) treatment, and at TAI to compare luteolysis based on serum progesterone (P4) concentrations. Although mean (± standard error of the mean) time from treatment to ovulation was approximately 2 h greater for cows treated with hCG than for cows treated with GnRH (33.7 ± 0.6 vs. 31.5 ± 0.6 h), P4 concentrations during luteolysis and the proportion of cows with complete luteolysis (P4 <0.4 ng/mL at G2) did not differ between treatments. We conclude that replacing 100 µg of GnRH with 2,500 IU of hCG at G1 of a DO protocol decreased fertility to TAI in lactating dairy cows but did not affect the rate or completeness of luteolysis despite the increased interval from treatment to ovulation.  相似文献   

5.
Our objectives were to evaluate circulating LH concentrations after intravaginal (IVG) instillation of GnRH analogs in lactating dairy cows. In 2 experiments, lactating Holstein cows (experiment 1: n = 32; experiment 2: n = 47) received the experimental treatments 48 h after the first of 2 PGF treatments given 12 h apart and 7 d after a modified Ovsynch protocol (GnRH at ?7 d, PGF at ?24 h, PGF at ?56 h, GnRH at 0 h). In experiment 1, cows were stratified by parity and randomly allocated to receive the following treatments: 2 mL of saline IVG (SAL, n = 6), 100 µg of gonadorelin (Gon) i.m. (G100-IM, n = 5), and 100 (G100, n = 7), 500 (G500, n = 8), or 1,000 µg of Gon IVG (G1000, n = 7). In experiment 2, treatments were SAL (n = 8), G100-IM (n = 8), G1000 (n = 7), 1,000 µg of Gon plus 10% citric acid (CA) IVG (G1000CA, n = 8), 80 µg of buserelin IVG (B80, n = 8), and 80 µg of buserelin plus 10% CA IVG (B80CA, n = 8). In both experiments, blood was collected every 15 min from ?15 min to 4 h, and every 30 min from 4 to 6 h after treatment. Data for area under the curve (AUC), mean LH concentrations, and time to maximum LH concentration were analyzed by ANOVA with (mean LH only) or without repeated measures using PROC MIXED of SAS (version 9.4, SAS Institute Inc., Cary, NC). The proportion of cows with a surge of LH was evaluated with Fisher's exact test using PROC FREQ of SAS. In both experiments, LH concentrations were affected by treatment, time, and the treatment by time interaction. In experiment 1, the AUC for LH and maximum LH concentration were greatest for the G100-IM treatment and were greater for the G1000 than for the SAL and G500 treatments. The proportion of cows with an observed surge of LH was 100 and 0% for cows that received Gon i.m. and IVG, respectively. In experiment 2, the AUC and maximum LH concentrations were greater for the G100-IM, G1000CA, and B80CA treatments than for the other IVG treatments. The proportion of cows with a surge of LH differed by treatment (SAL = 0%, G100-IM = 100%, G1000 = 14%, G1000CA = 88%, B80 = 13%, and B80CA = 100%). For the treatments with a surge of LH, time to maximum concentration of LH was the shortest for the G100-IM treatment, intermediate for the G1000CA treatment, and the longest for cows in the B80CA treatment. In conclusion, Gon (up to 1,000 µg) absorption through intact vaginal epithelium after a single IVG instillation was insufficient to elicit a surge of LH of normal magnitude. Conversely, IVG instillation of 1,000 µg of Gon and 80 µg of buserelin with the addition of citric acid as absorption enhancer resulted in a surge of LH of similar characteristics than that induced after i.m. injection of 100 µg of Gon.  相似文献   

6.
Cows anestrous at the start of a seasonal breeding period have lesser probability of breeding, lesser conception rates, and a longer interval to conception than cycling herdmates. Historically, treatment included estradiol benzoate, which is no longer available. Consequently, alternative programs are required. Hence, a study was undertaken to assess new treatment regimens for these cows. The presence or absence of a corpus luteum was determined using ultrasonography in cows (n = 2,222 from 12 herds) that were not detected in estrus by 9 d before the start of breeding. Cows were then randomly assigned to one of 4 treatments within each herd. Treatments were (1) 100 μg of gonadorelin, followed 7 d later by 500 μg of sodium cloprostenol, followed 54 to 56 h later by 100 μg of gonadorelin, followed by fixed-time artificial insemination at 13 to 18 h after the final GnRH injection (Ovsynch); (2) as for (1) but with placement of an intravaginal progesterone (P4)-releasing insert between the initial GnRH and PGF (Ovsynch-56+P4); (3) as for (2) but with the final GnRH treatment delayed until 71 h after PGF and P4 insert removal with fixed-time artificial insemination 0 to 5 h after GnRH treatment and with insemination of those cows detected in estrus before the second GnRH injection (Cosynch-72+P4); and (4) untreated controls (control). Day 0 was defined as the day of the second GnRH injection. Milk samples were collected from 154 and 152 cows from the Ovsynch and Ovsynch-56+P4 treatments, respectively, at d 0, 7, and 14 for P4 concentration determination. This was to test the hypothesis that inclusion of P4 would result in a greater proportion of cows having normal luteal function after treatment in these 2 groups that differed only in the inclusion of P4 in the Ovsynch-56+P4 treatment. All treatments resulted in shorter intervals from first day of breeding to conception compared with the controls. The Ovsynch-56+P4 treatment resulted in start of breeding to conception intervals 3, 6, and 16 d shorter than those of Cosynch-72+P4, Ovsynch, or controls, respectively, and the positive effect of the Ovsynch-56+P4 treatment occurred both in corpus-luteum-positive and in corpus-luteum-negative cows. The Ovsynch-56+P4 treatment resulted in fewer short interestrus intervals than did Ovsynch (i.e., <18 d; 16 vs. 31%) and more cows with elevated (>1 ng/mL) milk P4 concentrations at d 7 (88 vs. 74%) and d 14 (80 vs. 60%). It was concluded that treatment of anestrous cows before the start of breeding resulted in earlier conception than no treatment but had no effect on the final pregnancy rate. The addition of P4 to the Ovsynch program resulted in earlier conception and in more cows with normal subsequent luteal-phase lengths.  相似文献   

7.
《Journal of dairy science》2022,105(8):7023-7035
Double ovulation and twin pregnancy are undesirable traits in dairy cattle. Based on previous physiological observations, we tested the hypothesis that increased LH action [low-dose human chorionic gonadotropin (hCG)] before the expected time of diameter deviation would change circulating FSH concentrations, maximum size of the second largest (F2) and third largest (F3) follicles, and frequency of multiple ovulations in lactating dairy cows with minimal progesterone (P4) concentrations. In replicate 1, multiparous, nonbred lactating Holstein dairy cows (n = 18) had ovulation synchronized. On d 5 after ovulation, all cows had their corpus luteum regressed and were submitted to follicle (≥3 mm) aspiration 24 h later to induce emergence of a new follicular wave. Cows were then randomized to NoP4 (untreated) and NoP4+hCG (100 IU of hCG every 24 h for 4 d after follicle aspiration). Ultrasound evaluations and blood sample collections were performed every 12 h for 7 d after follicle aspiration. All cows were then treated with 200 μg of GnRH to induce ovulation. In replicate 2, cows (n = 16) were resubmitted to similar procedures (i.e., corpus luteum regression, follicle aspiration, randomization, ultrasound evaluations every 12 h, GnRH 7 d after aspiration). However, cows in replicate 2 received an intravaginal P4 device that had been previously used (~18 d). Only cows with single (n = 15) and double (n = 16) ovulations were used in the analysis. No significant differences were detected for frequency of double ovulation, follicle sizes, and FSH concentrations across replicates (NoP4 vs. LowP4 and NoP4+hCG vs. LowP4+hCG), so data were combined. Double ovulation was 40% for control cows with no hCG (CONT) and 62.5% with hCG (hCG). Double ovulation increased as the maximum size of F2 increased: <9.5 mm and 9.5–11.5 mm (7.7%) and ≥11.5 mm (94.1%). The hCG group had more cows with F2 > 11.5 (69%) than with 9.5 ≥ F2 ≤ 11.5 (25%) and F2 < 9.5 (6%). In agreement, F2 and F3 maximum size were larger in the hCG group, but FSH concentrations were lower after F1 > 8.5 mm compared with CONT. In contrast, FSH concentrations were greater before deviation (F1 closest value to 8.5 mm) in cows with double ovulations than in those with single ovulations, regardless of hCG treatment. In addition, time from aspiration to deviation was shorter in cows with double rather than single ovulation and in cows treated with hCG as a result of faster F1, F2, and F3 growth rates before diameter deviation. In conclusion, greater FSH and follicle growth before deviation seems to be a primary driver of greater frequency of double ovulation in lactating cows with low circulating P4. Moreover, the increase in follicle growth before deviation and in the maximum size of F2 during hCG treatment suggests that increased LH may also have a role in stimulating double ovulation.  相似文献   

8.
Lactating Holstein cows were assigned randomly to treatments to improve fertility after first postpartum timed artificial insemination (TAI). In Experiment 1, cows received no treatment (control; n = 9), a controlled internal drug releasing (CIDR) insert from 5 to 12 d after TAI (CIDR; n = 9), or 100 μg of GnRH 5 d after TAI (G5; n = 7). Although treatments did not affect circulating progesterone (P4) concentrations from 5 to 19 d after TAI, there was a tendency for CIDR cows to have greater P4 compared with control or G5 cows within 24 h after treatment. In 2 field trials, cows received either control (n = 223), CIDR (n = 218), or G5 (n = 227) treatments (Experiment 2), or control (n = 160), G5 (n = 159), or treatment with 100 μg of GnRH 7 d after TAI (G7; n = 163; Experiment 3). Treatment did not affect pregnancies per AI (P/AI) in Experiments 2 or 3; however, when data were combined to compare control (n = 383) and G5 (n = 386) treatments, P/AI tended to be greater for G5 (49.1%) than for control (45.8%) cows. This effect resulted from a GnRH treatment × cyclicity status interaction in which P/AI for noncycling cows receiving G5 was greater than for noncycling control cows (45.5 vs. 31.1%). In conclusion, treatment with CIDR inserts after TAI had no effect on P/AI, whereas treatment with GnRH 5 d after TAI improved P/AI for noncycling, but not for cycling cows.  相似文献   

9.
The objective was to determine the effects of progestogen treatment on the lifespan of the first corpus luteum induced by GnRH in periparturient-milked cows. Dairy cows (n = 55) were assigned randomly following normal parturitions to receive either a progestogen implant (6 mg of norgestomet) or a blank implant (control) for 6 d beginning 2 to 5 d after calving. Fifty micrograms of GnRH were administered i.m. 72 h after implant removal to induce ovulation. Concentrations of LH and FSH in serum from 24 to 30 h and from 66 to 72 h after implant removal were similar among treatments. The magnitude of LH released after GnRH injection was higher in progestogen-treated cows (7.6 +/- .9 ng/ml) than in controls (5.3 +/- .9 ng/ml). Concentrations of estradiol in serum from the beginning of the implant period until 3 d after GnRH injection were higher in cows receiving progestogen (9.1 +/- 1.7 pg/ml) than in controls (5.6 +/- 1.7 pg/ml). The proportion of cows that responded to GnRH (elevated concentrations of progesterone in serum greater than .5 ng/ml within 3 to 5 d after injection) tended to be higher in cows receiving progestogen (24 of 28) than in control cows (19 of 27). By definition, interval to first ovulation after GnRH injection was shorter in cows responding to GnRH (3.8 +/- .5 d) than in those failing to respond (20.2 +/- .9 d).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The objectives of the current study were to evaluate the efficacy and field safety of GnRH HCl administered at 3 doses in fixed-time artificial insemination (FTAI) programs (Ovsynch) in dairy cows. A common protocol was conducted at 6 commercial dairies. Between 188 and 195 cows were enrolled at each site (total enrolled = 1,142). Cows had body condition scores ≥2 and ≤4, were between 32 to 140 d in milk, and were clinically healthy. Within pen and enrollment day (enrollment cohort), cows were assigned randomly in blocks of 4 to each of 4 treatments: (1) 25 mg of PGF on d 7 with FTAI 72 ± 2 h later (control); (2) 100 μg of GnRH on d 0, d 7 a dose of 25 mg of PGF, and the second administration of 100 μg of GnRH (T100) administered either at 48 ± 2 h (d 9) after PGF with FTAI 24 ± 2 h later or 56 ± 2 h (d 9) after PGF and FTAI 17 ± 2 h later; (3) same as T100 with both injections of 150 μg of GnRH (T150); and (4) same as T100 with both injections of 200 μg of GnRH (T200). Three sites selected the first option and 3 sites selected the second option for the timing of the second injection of all doses of GnRH. Cows were observed daily for signs of estrus and adverse clinical signs. Cows not returning to estrus had pregnancy diagnosis between 42 and 65 d following FTAI. Pregnancies per FTAI (P/FTAI) were analyzed as a binary variable (1 = pregnant, 0 = not pregnant) using a generalized linear mixed model with a binomial error distribution and a logit link function. The statistical model included fixed effects for treatment, random effects of site, site by treatment, enrollment cohort within site, and residual. Parity (first vs. second or greater) was included as a covariate. For demonstration of effectiveness, α = 0.05 and a 2-tailed test were used. Fifty-two cows were removed from the study because of either deviation from the protocol, injury, illness, culling, or death. Among the remaining 1,090 cows, 33.9% were primiparous and 66.1% were multiparous. Back-transformed least squares means for P/FTAI were 17.1, 27.3, 29.1, and 32.2% for control, T100, T150 and T200, respectively. The P/FTAI for each GnRH dose differed from that of the control. No differences were detected in P/FTAI between GnRH doses. No treatment-related adverse events were observed. Mastitis was the most frequently observed adverse clinical sign, followed by lameness and pneumonia. This study documents the efficacy and safety of doses of 100 to 200 μg of GnRH as the HCl salt when used in Ovsynch programs.  相似文献   

11.
《Journal of dairy science》2023,106(1):755-768
Our objective was to evaluate the effect of 3 different Ovsynch protocols on progesterone (P4) and pregnancies per artificial insemination (P/AI), where all cows received a P4 releasing intravaginal device (PRID) from d 0 until d 8. We hypothesized that (1) both modified PGF treatments lead to decreased P4 at the second GnRH treatment (G2), resulting in greater P/AI, (2) the treatment effect is influenced by the presence of a corpus luteum (CL) at the beginning of the protocol, and (3) potential vaginal discharge caused by the PRID does not have a negative influence on fertility. Lactating Holstein cows (n = 1,056) were randomly assigned to 1 of 3 treatment groups on a weekly basis (n = 356; control: d 0, 100 µg of GnRH + PRID; d 7, 25 mg of dinoprost; d 8, PRID removal; d 9, 100 µg of GnRH). Cows in the second group (n = 353) received an Ovsynch protocol with a double dose of PGF (DoubleDose: d 0, 100 µg of GnRH + PRID; d 7, 50 mg of dinoprost; d 8, PRID removal; d 9, 100 µg of GnRH). Cows in the third group (n = 347) received an Ovsynch protocol with a second PGF treatment 24 h after the first one (2PGF: d 0, 100 µg of GnRH + PRID; d 7, 25 of mg dinoprost; d 8, 25 mg of dinoprost and PRID removal; d 9, 100 µg of GnRH). All cows had their ovaries scanned to determine the presence of a CL at the beginning of the Ovsynch protocol. Vaginal discharge score (VS) was evaluated at PRID removal. All cows received timed artificial insemination approximately 16 h after G2. Pregnancy diagnosis was performed via transrectal ultrasonography (d 38 ± 3 after timed artificial insemination) and rechecked on d 80 ± 7 after timed artificial insemination. Blood samples were collected on d 0, 7, and 9 of the protocol to determine P4 concentrations. Treatment affected P4 at G2. Progesterone was lower for 2PGF and DoubleDose cows compared with cows in the control group (control 0.35 ± 0.02 ng/mL; DoubleDose 0.29 ± 0.02 ng/mL; 2PGF 0.30 ± 0.02 ng/mL). Overall, P/AI did not differ among treatments. We found, however, an interaction between treatment and CL at the first GnRH treatment. Cows lacking a CL at the first GnRH treatment in the 2PGF group had greater P/AI (47.9%) compared with the same type of cows in the DoubleDose group (32.7%). We observed an effect of VS on P4 concentration at d 7. We found an increase in P4 with greater VS. Vaginal discharge score at PRID removal tended to have a positive effect on P/AI at d 38 (VS0: 36.5%; VS1: 41.3%; VS2: 49.7%). In conclusion, the addition of a second PGF treatment on d 7 and 8 of a 7-d Ovsynch protocol increased luteal regression and decreased mean P4 at G2. Cows treated with PGF 2 times 24 h apart showed greater P/AI, compared with cows treated with an increased dose of PGF.  相似文献   

12.
《Journal of dairy science》2022,105(1):831-841
The objectives of this study were to determine the effects of GnRH at the time of artificial insemination (AI) on ovulation, progesterone 7 d post-AI, and pregnancy in cows detected in estrus using traditional methods (tail chalk removal and mount acceptance visualization) or an automated activity-monitoring (AAM) system. We hypothesized that administration of GnRH at the time of AI would increase ovulation rate, plasma progesterone post-AI, and pregnancy per AI (P/AI) in cows detected in estrus. In experiment 1, Holstein cows (n = 398) were blocked by parity and randomly assigned to receive an injection of GnRH at the time of estrus detection/AI (GnRH, n = 197) or to remain untreated (control, n = 201) on 4 farms. The GnRH was administered as 100 µg of gonadorelin acetate. Ovarian structures and plasma progesterone were assessed in a subset of cows (GnRH, n = 52; control, n = 55) in experiment 1 at the time of AI and 7 d later. In experiment 2, a group of 409 cows in an AAM farm were enrolled as described for experiment 1 (GnRH, n = 207; control, n = 202). Data were categorized for parity (primiparous vs. multiparous), season (cool vs. warm), number of services (first vs. > first), DIM (>150 DIM vs. ≤150 DIM), and for AAM cows in experiment 2 for activity level (high: 90–100 index vs. low: 35–89 index). Pregnancy diagnosis was performed between 32 and 45 d post-AI (P1) and 60 to 115 d post-AI (P2). In experiment 1, there was no difference in plasma progesterone at day of estrus detection (control = 0.09 ng/mL vs. GnRH = 0.16 ng/mL), 7 d later (control = 2.03 ng/mL vs. GnRH = 2.18 ng/mL), and ovulation rate (GnRH = 83.2% vs. control = 77.9%) between treatments. There were no effects of GnRH in experiment 1 for P/AI at P1 (control = 43.3% vs. GnRH = 38.6%), P2 (control = 38.4% vs. GnRH = 34.5%), and for pregnancy loss (control = 9.8% vs. GnRH = 8.2%). In experiment 2, there were no effects of GnRH for P/AI at P1 (control = 39.6% vs. GnRH = 40.1%), P2 (control = 35.0% vs. GnRH = 37.4%), and for pregnancy loss (control = 9.5% vs. GnRH = 6.2%). There was a tendency for a parity effect on P/AI for P1, but not P2 or for pregnancy loss. High-activity cows had greater P/AI in P1 (low activity = 27.9% vs. high activity = 44.1%), P2 (low activity = 21.8% vs. high activity = 41.2%), and lower pregnancy loss (low activity = 20.7% vs. high activity = 5.1%), but there were no interactions between treatment and activity level. The current study did not support the use of GnRH at estrus detection to improve ovulatory response, progesterone 1 wk post-AI, and P/AI. More research is needed to investigate the relationship between GnRH at the time of AI and activity level in herds using AAM systems.  相似文献   

13.
Our objective was to evaluate the effect of a second PGF treatment (25 mg of dinoprost) or a double dose of PGF (50 mg of dinoprost) during a Resynch protocol on luteal regression and pregnancies per artificial insemination (P/AI) in lactating dairy cows. Lactating Holstein cows (n = 1,100) were randomly assigned at a nonpregnancy diagnosis to receive (1) Ovsynch (control: 100 µg of GnRH; 7 d, 25 mg of PGF; 56 h, 100 µg of GnRH), (2) Ovsynch with a second PGF treatment (GPPG: 100 µg of GnRH; 7 d, 25 mg of PGF; 24 h, 25 mg of PGF; 32 h, 100 µg of GnRH), or (3) Ovsynch with a double dose of PGF (GDDP: 100 µg of GnRH; 7 d, 50 mg of PGF; 56 h, 100 µg of GnRH). All cows received timed artificial insemination (TAI) approximately 16 h after the second GnRH treatment (G2). Pregnancy diagnosis was performed by transrectal palpation 39 ± 3 d after TAI, and pregnancy status was reconfirmed 66 d after TAI. Blood samples collected from a subset of cows in each treatment at the first PGF treatment (n = 394) and at G2 (n = 367) were assayed for progesterone (P4). Data were analyzed by logistic regression using the GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). At 39 d after TAI, GPPG cows tended to have more P/AI than control cows [35% (137/387) vs. 31% (107/349)], whereas P/AI for GDDP cows [32% (118/364)] did not differ from that for control cows. Pregnancy loss from 38 to 66 d did not differ among treatments and was 8% (30/362). The percentage of cows with complete luteal regression (P4 <0.4 ng/mL at G2) tended to differ among treatments and was greater for GPPG cows than for GDDP and control cows (94% vs. 88% vs. 88%, respectively). Overall, cows with P4 <1 ng/mL at the first PGF treatment had fewer P/AI than cows with P4 ≥1 ng/mL (27% vs. 38%), whereas cows with P4 ≥0.4 ng/mL at G2 had fewer P/AI than cows with P4 <0.4 ng/mL (15% vs. 38%). We conclude that adding a second PGF treatment 24 h after the first within a Resynch protocol tended to increase the proportion of cows undergoing complete luteal regression and P/AI, whereas treatment with a double dose of PGF at a single time did not.  相似文献   

14.
Using a 5-d controlled internal drug-release (CIDR)-Cosynch resynchronization protocol, the objective of this study was to determine the effect of the initial GnRH injection on pregnancy per artificial insemination (P/AI) to the second artificial insemination in lactating Holstein dairy cows. On 37 ± 3 d (mean ± standard deviation) after the first artificial insemination, and upon nonpregnancy diagnosis (d 0 of the experiment), lactating cows eligible for a second artificial insemination (n = 429) were enrolled in a 5-d CIDR-Cosynch protocol. On d 0, all cows received a CIDR insert and were assigned randomly to receive the initial GnRH injection (GnRH; n = 226) of the protocol or no-GnRH (n = 203). Blood samples were collected from a sub-group of cows (n = 184) on d 0 and analyzed for progesterone (P4) concentration. On d 5, CIDR inserts were removed, and all cows received 1 injection of PGF. On d 6 and 7, cows were observed once daily by employees for tail-chalk removal, and cows detected in estrus on d 6 or 7 received artificial insemination that day (EDAI), and did not receive the final GnRH injection. The remaining cows not detected in estrus by d 8 received GnRH and timed artificial insemination (TAI). Pregnancy status was confirmed by transrectal palpation of uterine contents at 37 ± 3 d (mean ± standard deviation) after the second artificial insemination. Eliminating the initial GnRH injection had no effect on P/AI compared with cows receiving GnRH (27 vs. 21%), respectively. Similarly, method of insemination (EDAI vs. TAI) and its interaction with treatment had no effect on P/AI. Primiparous cows had greater P/AI than multiparous cows (31 vs. 21%). Mean P4 concentrations (n = 184) at the initiation of the protocol did not differ between treatments (4.51 ± 0.35 ng/mL no-GnRH vs. 3.96 ± 0.34 ng/mL of GnRH). When P4 concentrations were categorized as high (≥1 ng/mL) or low (<1 ng/mL), P/AI tended to be greater for high P4 concentrations (n = 136) compared with low (n = 48) P4 concentrations (26 vs. 16%, respectively). No differences were observed in the proportion of cows with high or low P4 between treatments. Collectively, these results provide evidence that eliminating the initial GnRH in a 5-d CIDR-Cosynch resynchronization protocol for lactating dairy cows did not reduce P/AI in this study.  相似文献   

15.
Our objectives were to evaluate the pattern of re-insemination, ovarian responses, and pregnancy per artificial insemination (P/AI) of cows submitted to different resynchronization of ovulation protocols. The base protocol started at 25 ± 3 d after artificial insemination (AI) and was as follows: GnRH, 7 and 8 d later PGF, GnRH 32 h after second PGF, and fixed timed AI (TAI) 16 to 18 h after GnRH. At 18 ± 3 d after AI, cows were randomly assigned to the G25 (n = 1,100) or NoG25 (n = 1,098) treatments. The protocol for G25 and NoG25 was the same, except that cows in NoG25 did not receive GnRH 25 ± 3 d after AI. At nonpregnancy diagnosis (NPD), 32 ± 3 d after AI, cows from G25 and NoG25 with a corpus luteum (CL) ≥15 mm in diameter and a follicle ≥10 mm completed the protocol (G25 CL = 272, NoG25 CL = 194), whereas cows from both treatments that did not meet these criteria received a modified Ovsynch protocol with P4 supplementation [controlled internal drug release insert plus GnRH, controlled internal drug release insert removal, and PGF 7 and 8 d later, GnRH 32 h after second PGF, and TAI 16 to 18 h after GnRH (G25 NoCL = 53, NoG25 NoCL = 78)]. Serum concentrations of progesterone (P4) were determined and ovarian ultrasonography was performed thrice weekly from 18 ± 3 d after AI until 1 d after TAI (G25 = 46, NoG25 = 44 cows). A greater percentage of NoG25 cows were re-inseminated at detected estrus (NoG25 = 53.5%, G25 = 44.6%), whereas more cows had a CL at NPD in G25 than NoG25 (83.7 and 71.3%). At 32 d after AI, P/AI was similar for G25 and NoG25 for inseminations at detected estrus (38.4 and 42.9%), TAI services for cows with no CL (40.4 and 36.7%), and for all services combined (39.6 and 39.0%). However, P/AI were greater for cows with a CL in G25 than NoG25 (40.6 and 32.8%) that received TAI. More cows ovulated spontaneously or in response to GnRH for the G25 than the NoG25 treatment (70 and 36%) but a similar proportion had an active follicle at NPD (G25 = 91% and NoG25 = 96%). The largest follicle diameter at NPD (G25 = 15.0 ± 0.4 mm, NoG25 = 16.5 ± 0.6 mm) and days since it reached ≥10 mm (G25 = 4.0 ± 0.3 d, NoG25 = 5.8 ± 0.6 d) were greater for the NoG25 than G25 treatment. For cows with a CL at NPD, CL regression after NPD, ovulation after TAI, and ovulatory follicle diameter did not differ. In conclusion, removing the first GnRH of a modified Resynch-25 protocol for cows with a CL at NPD and a modified Ovsynch protocol with P4 supplementation for cows without a CL at NPD resulted in a greater percentage of cows re-inseminated at detected estrus and a similar proportion of cows pregnant in spite of reduced P/AI for cows with a CL at NPD.  相似文献   

16.
Our purpose was to determine whether estradiol cypionate (ECP) could be substituted for the second GnRH injection of the standard Ovsynch protocol (injection of GnRH given 7 d before and 48 h after PGF(2alpha), with timed AI [TAI] 12 to 20 h after the second GnRH injection). Lactating dairy cows ranging from 61 to 82 d in milk at TAI were studied in 14 replicates. Main effects were hormone (ECP vs. GnRH) to induce ovulation and exposure to progesterone (P4) or not during the week preceding PGF(2alpha)-induced luteolysis. Four treatments were: 1) 100 microg of GnRH at 48 h after PGF(2alpha) (Ovsynch; n = 27); 2) same as Ovsynch, plus a P4-releasing intravaginal insert (CIDR) placed for 7 d beginning at the first GnRH injection (Ovsynch + CIDR, n = 20); 3) same as Ovsynch, but substituting 1 mg of ECP for GnRH, and injecting ECP at 24 h after PGF(2alpha) (Heatsynch; n = 33); or 4) Heatsynch + CIDR (n = 26). The largest follicle was identified by ultrasonography 24 h after PGF(2alpha) and was monitored every 6 h until ovulation. Incidence of estrus was less after GnRH (54%) than after ECP (87%), but more GnRH-treated cows had LH surges detected (95 vs. 65%) and ovulated (100 vs. 86%). Duration of LH surges, but not peak concentrations, was less after GnRH than after ECP (6.1 +/- 0.7 vs. 12.2 +/- 0.9 h). Pre-treatment with P4 reduced the incidence of LH surges but had no effects on incidence of estrus or ovulation. Intervals to the LH surge and ovulation were less after GnRH than after ECP, but intervals between onset of the LH surge and ovulation did not differ (26 +/- 2 vs. 30 +/- 3 h). We concluded that substituting ECP for GnRH resulted in more cows in estrus and slightly fewer ovulating.  相似文献   

17.
《Journal of dairy science》2023,106(7):5115-5126
This study aimed to determine the effect of 2 simple breeding strategies combining artificial insemination (AI) after detection of estrus (AIED) and timed AI (TAI) on first-service fertility in lactating Holstein cows. Weekly, lactating Holstein cows (n = l,049) between 40 and 46 d in milk (DIM) were randomly assigned to initiate 1 of 2 breeding strategies for first service: Presynch-14 and PG+G. Presynch-14 is a presynchronization strategy with 2 PGF treatments 14 d apart with the last PGF 14 d before the initiation of the Ovsynch protocol. Cows treated with PG+G receive a simpler presynchronization program that uses PGF and GnRH simultaneously 7 d before Ovsynch. In both treatments, cows detected in standing estrus by tail chalk at any time ≥55 DIM were inseminated, and treatment was discontinued (n = 525). Cows completing treatment received TAI from 78 to 84 DIM (n = 526). In a subgroup of cows that received TAI, blood was collected (n = 163) to assess circulating concentrations of progesterone, and ultrasonographic evaluations of ovaries were performed on the day of first GnRH of Ovsynch (n = 162) and PGF of Ovsynch (n = 122). The proportion of cows that received TAI was greater for PG+G compared with Presynch-14 (63.5 vs. 31.9%), which increased DIM at first service for cows treated with PG+G compared with Presynch-14 (75.5 ± 0.4 vs. 68.7 ± 0.4). For cows receiving TAI, the ovulatory response to first GnRH of Ovsynch (73.8 vs. 48.8%) and the proportion of cows with functional corpora lutea (92.6 vs. 73.1%) were greater for PG+G than Presynch-14. Cows treated with PG+G had greater overall pregnancy per AI (P/AI) 42 ± 7 d after AI (40.2 vs. 33.6%) and calving per AI (32.1 vs. 25.2%) than Presynch-14. For cows receiving AIED, treatment did not affect P/AI 42 ± 7 d after AI. However, for cows receiving TAI, PG+G increased P/AI compared with Presynch-14 (44.6 vs. 35.2%). Overall, cows receiving TAI had greater P/AI 42 ± 7 d after AI (42.5 vs. 31.5%) and calving per AI (34.1 vs. 23.7%) and decreased pregnancy loss (16.8 vs. 25.2%) than cows receiving AIED. In summary, PG+G increased the proportion of cows receiving TAI and the DIM at first service, P/AI, and calving per AI compared with Presynch-14 when both TAI programs were combined with AIED.  相似文献   

18.
Objectives were to determine the effect of progesterone (P4) concentration on fertility of lactating dairy cows induced to ovulate follicles of the first follicular wave. Lactating dairy cows (n=989) at 38±3d postpartum were balanced by parity and body condition score and randomly assigned to 3 treatments: first follicular wave (FFW), first follicular wave with exogenous P4 (FFWP), or second follicular wave (SFW). All cows had their estrous cycle presynchronized with 2 injections of prostaglandin (PG) F(2α) given 14 d apart. Cows in the FFW and FFWP treatments started the ovulation synchronization protocol 3 d after the last PGF(2α) of the presynchronization protocol, whereas SFW cows received a GnRH injection (100 μg of gonadorelin diacetate; Cystorelin, Merial Ltd., Duluth, GA) 3 d after the last PGF(2α) of the presynchronization protocol and started the synchronization protocol 7 d later. The synchronization protocol consisted of GnRH on d -10, PGF(2α) on d -3, and GnRH concurrent with timed artificial insemination (AI) on d 0. Cows in the FFWP treatment received 2 controlled internal drug release inserts containing 1.38 g of P4 from d -8 to -3. Progesterone concentration was determined on d -10, -8, -6, -3, and 0 from all cows and at 7, 14, and 21 d after AI from a subsample of cows (n=170). Cows (n=715) had their ovaries scanned by ultrasound on d -10, -3, and 7 d. Pregnancy was diagnosed at 38 and 66 d after AI. Concentration of P4 from study d -8 to -3 was lowest for FFW cows (1.4±0.1 ng/mL) and similar between SFW (3.7±0.2 ng/mL) and FFWP (3.7±0.1 ng/mL) cows. Diameter of the dominant follicle on study d -3 was greater for FFW cows (16.5±0.3 mm) than for SFW cows (15.4±0.3 mm), but diameter of the dominant follicle of FFWP cows was not different (15.9±0.3 mm) compared with that of SFW and FFW cows. The incidence of multiple ovulation was largest for FFW cows (SFW=19.5, FFW=33.6, FFWP=19.0%), but pregnancy per AI (P/AI) at 66 d was smallest for FFW cows (SFW=38.9, FFW=22.3, FFWP=32.0%). Anovular cows in the SFW (19.4 vs. 42.8%) and FFWP (22.1 vs. 37.2%) treatments had reduced P/AI compared with cyclic cows, despite having similar or greater P4 concentration from study d -8 to -3, respectively. Estrus and ovulation synchronization protocols for lactating dairy cows must result in growth of ovulatory follicle under P4 concentration >2 ng/mL to ensure high P/AI.  相似文献   

19.
The present study aimed to establish an efficient system for the production of female embryos from dairy cows by in vitro fertilization (IVF) using X-sorted sperm and in vivo-matured oocytes collected by ovum pick up (OPU). Nonlactating Holstein cows (n = 36) were administered a controlled intravaginal progesterone-releasing (controlled internal drug release) device (d 0), underwent dominant follicle ablation (DFA) or ovulation by administration of 100 μg of GnRH on d 5, and were superstimulated with FSH and PGF, following standard procedures. Controlled internal drug release devices were removed on the evening of d 8 or on the morning of d 9, depending on the experiment. For LH surge induction, 200 μg of GnRH was administered on the morning of d 10 (0 h). In experiment 1, the peak (48.1%) of ovulating follicles was detected at 29 to 32 h after GnRH injection (0 h), and the range in the timing of the initiation of ovulation was less by timing from GnRH administration (30.0 ± 2.8 h) rather than by timing the onset of estrus (32.7 ± 4.7 h). Only 0.9% of total ovulated follicles were recorded before 26 h after GnRH injection. Therefore, OPU was carried out at 26 h and IVF occurred at 30 h after GnRH in experiments 2 and 3. In experiment 2, 83.3 ± 10.8% of oocytes with expanded cumulus cells had extruded the first polar body at 30 h after GnRH injection. The aim of experiment 3 was to compare the effect of either DFA or GnRH-induced LH surge before superstimulation on the efficiency of embryo production by IVF following superstimulation. Progesterone concentrations from d 10 to 12 in the DFA group were lower than those in the GnRH group. A greater proportion of recovered oocytes with expanded cumulus cells from ≥8-mm follicles was observed in the DFA group than in the GnRH group (95.9 and 77.4%, respectively). Blastocyst rates in the DFA and GnRH groups (58.0 and 52.8%, respectively) did not differ from those of oocytes collected from nonstimulated OPU and matured in vitro (49.9%). However, the proportion of high-quality blastocysts was higher in the DFA group compared with the GnRH group (54.9 vs. 21.5%). Our results demonstrate that high rates of good-quality blastocysts can be produced by IVF with X-sorted frozen sperm using in vivo-matured oocytes collected by OPU from cows after DFA and superstimulation combined with ovulation induction.  相似文献   

20.
Ovulatory response to the first GnRH of Ovsynch is the critical determinant for successful synchronization of ovulation in dairy cows. Our objective in this study was to develop a pre-Ovsynch treatment that increased the percentage of cows that ovulated in response to the first GnRH injection of Ovsynch. To accomplish our goal, we evaluated a hormonal strategy that consisted of PGF2α and GnRH before the first GnRH of Ovsynch. Lactating dairy cows (n = 137) were assigned to receive either no treatment before Ovsynch (control) or 25 mg of PGF2α (PreP) followed 2 d later by 100 μg of GnRH (PreG), administered 4 (G4G), 5 (G5G), or 6 (G6G) d before initiating the Ovsynch protocol. Transrectal ultrasonography was performed to assess follicular size and resulting ovulation, and blood samples were collected to measure circulating concentrations of progesterone and estradiol immediately before each hormonal injection. Cows were inseminated at a fixed time 16 h after final GnRH of Ovsynch. Pregnancy diagnosis was performed 35 d later by palpation per rectum of uterine contents. Proportion of cows that ovulated to first GnRH of Ovsynch was 56.0, 66.7, 84.6, and 53.8% for G4G, G5G, G6G, and controls, respectively, and was greater for G6G than for control cows. Luteolytic response to PGF2α of Ovsynch was greater in all treated than control cows (92.0, 91.7, 96.2, and 69.2% for G4G, G5G, G6G, and control, respectively). Synchronization rate to Ovsynch was greater (92 vs. 69%, respectively) in G6G than in control cows. In addition, cows that ovulated in response to first GnRH of Ovsynch had greater response to PGF2α of Ovsynch (92.7 vs. 77.1%, respectively) and greater synchronization rate to the overall protocol (87.9 vs. 62.9%, respectively) than those that did not ovulate. Concentrations of progesterone at PGF2α of Ovsynch, and estradiol and follicle size at final GnRH of Ovsynch, were identified as significant predictors of probability of pregnancy 35 d after artificial insemination. In summary, a PGF2α-and-GnRH based pre-Ovsynch strategy consisting of a 6-d interval between PreG and first GnRH of Ovsynch resulted in a greater ovulatory and luteolytic response to first GnRH and PGF2α of Ovsynch, respectively, compared with control cows. This, in turn, optimized synchronization rate to Ovsynch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号