首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the effect of nanofluids on the thermal performance of heat pipes is experimentally investigated by testing circular screen mesh wick heat pipes using water-based Al2O3 nanofluids with the volume fraction of 1.0 and 3.0 Vol.%. The wall temperature distributions and the thermal resistances between the evaporator and the adiabatic sections are measured and compared with those for the heat pipe using DI water. The averaged evaporator wall temperatures of the heat pipes using the water-based Al2O3 nanofluids are much lower than those of the heat pipe using DI water. The thermal resistance of the heat pipe using the water-based Al2O3 nanofluids with the volume fraction of 3.0 Vol.% is significantly reduced by about 40% at the evaporator-adiabatic section. Also, the experimentally results implicitly show that the water-based Al2O3 nanofluids as the working fluid instead of DI water can enhance the maximum heat transport rate of the heat pipe. Based on the two clear evidences, we conclude that the major reason which can not only improve the maximum heat transport rate but also significantly reduce the thermal resistance of the heat pipe using nanofluids is not the enhancement of the effective thermal conductivity which most of previous researchers presented. Especially, we experimentally first observe the thin porous coating layer formed by nanoparticles suspended in nanofluids at wick structures. Based on the observation, it is first shown that the primary mechanism on the enhancement of the thermal performance for the heat pipe is the coating layer formed by nanoparticles at the evaporator section because the layer can not only extend the evaporation surface with high heat transfer performance but also improve the surface wettability and capillary wicking performance.  相似文献   

2.
In this study, the methanol-based nanofluids with Al2O3 and SiO2 nanoparticles are prepared by dispersing nanoparticles in pure methanol using an ultrasonic equipment. The main objective of this paper is to measure the thermal conductivity of the methanol-based nanofluids. We have also measured the zeta potential, particle size and Tyndall effect for the present nanofluids. The transient hot-wire method is applied for measuring the thermal conductivity of methanol-based nanofluids. The measurement uncertainty in repeatability is obtained as 1.95% for deionized (DI) water and 1.34% for pure methanol, respectively. The effective thermal conductivity of methanol-based nanofluids is measured at a temperature of 293.15 K. The results show that the thermal conductivity increases with an increase of the nanoparticle volume fraction, and the enhancement is observed to be 10.74% and 14.29% over the basefluid at the volume fraction of 0.5vol% for Al2O3 and SiO2 nanoparticles, respectively. Clustering of nanoparticles is considered to be the main reason for the thermal conductivity enhancement.  相似文献   

3.
In this paper, the effect of water-based Al2O3 nanofluids as working fluid on the thermal performance of a flat micro-heat pipe with a rectangular grooved wick is investigated. For the purpose, the axial variations of the wall temperature, the evaporation and condensation rates are considered by solving the one-dimensional conduction equation for the wall and the augmented Young–Laplace equation for the phase change process. In particular, the thermophysical properties of nanofluids as well as the surface characteristics formed by nanoparticles such as a thin porous coating are considered. From the comparison of the thermal performance using both DI water and nanofluids, it is found that the thin porous coating layer formed by nanoparticles suspended in nanofluids is a key effect of the heat transfer enhancement for the heat pipe using nanofluids. Also, the effects of the volume fraction and the size of nanoparticles on the thermal performance are studied. The results shows the feasibility of enhancing the thermal performance up to 100% although water-based Al2O3 nanofluids with the concentration less than 1.0% is used as working fluid. Finally, it is shown that the thermal resistance of the nanofluid heat pipe tends to decrease with increasing the nanoparticle size, which corresponds to the previous experimental results.  相似文献   

4.
This paper deals with pool boiling of water–Al2O3 and water–Cu nanofluids on porous coated, horizontal tubes. Commercially available stainless-steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate a test heater. Aluminum porous coatings 0.15 mm thick with porosity of about 40% were produced by plasma spraying. A smooth tube served as a reference tube. The experiments were conducted under different absolute operating pressures of 200 kPa, 100 kPa, and 10 kPa. Nanoparticles were tested at concentrations of 0.01%, 0.1%, and 1% by weight. In all cases tested, enhancement heat transfer was always observed during boiling of water–Al2O3 and water–Cu nanofluids on smooth tubes compared to boiling of distilled water. Contrary to smooth tubes, addition of even a small amount of nanoparticles resulted in deterioration of heat transfer during pool boiling of water–Al2O3 and water–Cu nanofluids on porous coated tubes in comparison with boiling of distilled water.  相似文献   

5.
Aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles in the 0.01–0.3 vol.% range were produced and characterized. Measurements of zeta potential and TEM micrograph of the alumina nanoparticles in the Al2O3–water nanofluids show that the alumina nanoparticles can be best dispersed and stabilized in DI water with little evidence of aggregation at 5 h of ultrasonic vibration. Viscosity measurements show that the viscosity of the Al2O3–water nanofluids significantly decreases with increasing temperature. Furthermore, the measured viscosities of the Al2O3–water nanofluids show a nonlinear relation with the concentration even in the low volume concentration (0.01%–0.3%) range, while the Einstein viscosity model clearly predicts a linear relation, and exceed the Einstein model predictions. In contrast to viscosity, the measured thermal conductivities of the dilute Al2O3–water nanofluids increase nearly linearly with the concentration, agree well with the predicted values by the Jang and Choi model, and are consistent in their overall trend with previous data at higher concentrations.  相似文献   

6.
In this work, γ-Al2O3 nanoparticles with mean diameter of 10 nm are dispersed in deionized water with four nanoparticle volume concentrations of 0.25, 0.5, 0.75, and 1%. The effect of γ-Al2O3/water nanofluids on the heat transfer enhancement of heat exchangers is investigated under turbulent regime for four different volumetric flow rates of 150, 200, 250, and 300 L/h. The experimental results showed that the convective heat transfer is increased by increasing particles volume fraction as well as flow rate. The maximum enhancement obtained in Nusselt number and heat transfer coefficient was 20 and 22.8%, respectively, at Reynolds number of 6026 and particle volume fraction of 1%. The experimental Nusselt numbers of nanofluids showed good agreement with the available empirical correlation at particle volume fractions of 0.25 and 0.5%. An empirical correlation is obtained to estimate the Nusselt number of nanofluid under the conditions of this work.  相似文献   

7.
The present study aims to provide an overall analysis about nanofluids flowing through microchannel heat sinks. Al2O3 and TiO2 nanofluids based on deionized water with particle volume fractions of 0%, 0.1%, 0.5%, 1.0% were prepared by the two-step dispersion method. Nonionic surfactant polyvinylpyrrolidone (PVP) was added into the nanofluids to avoid particle aggregation and enhance stability. An ImageIR 3350 was used to get the temperature distribution on the substrate of microchannel heat sinks. The results reveal that the thermal conductivity and dynamic viscosity of Al2O3 and TiO2 nanofluids are both improved with the increase of particle volume fraction. Compared with a rectangular microchannel heat sink, the performance of heat transfer in fan-shaped microchannel heat sink is more strengthened using Al2O3 nanofluids. The thermal motion of nanoparticles could promote the interruption of laminar flow and intensify the heat transfer between fluids and channel walls. The cyclical change with a fixed period on equivalent diameter could also help destroy the boundary layers.  相似文献   

8.
In the present investigation nanofluids containing CuO and Al2O3 oxide nanoparticles in water as base fluid in different concentrations produced and the laminar flow convective heat transfer through circular tube with constant wall temperature boundary condition were examined. The experimental results emphasize that the single phase correlation with nanofluids properties (Homogeneous Model) is not able to predict heat transfer coefficient enhancement of nanofluids. The comparison between experimental results obtained for CuO / water and Al2O3 / water nanofluids indicates that heat transfer coefficient ratios for nanofluid to homogeneous model in low concentration are close to each other but by increasing the volume fraction, higher heat transfer enhancement for Al2O3 / water can be observed.  相似文献   

9.
An experimental study was performed to investigate the thermal performance of an L-shaped grooved heat pipe with cylindrical cross section, which contained 0.5 wt% water-based Al2O3 nanofluid as the working fluid. The transient performance of the heat pipe and the effect of cooling water temperature on the heat transfer characteristics of the heat pipe were investigated. The outer diameter and the length of the heat pipe were 6 mm and 220 mm, respectively. Experimental results revealed that the temperature of the cooling water has a significant effect on the thermal resistance of the heat pipe containing nanofluids as its working fluid. By increasing the cooling water temperature from 5°C to 27.5°C, the thermal resistance decreases by approximately 40%. At the same charge volume, test results indicated an average reduction of 30% in thermal resistance of heat pipes with nanofluid as compared with heat pipe containing pure water. For transient conditions, unsteady state time for nanofluids was reduced by approximately 28%, when compared with water as the working fluid.  相似文献   

10.
ABSTRACT

Nanofluids are the combination of a base fluid with nanoparticles with sizes of 1–100 nm. In order to increase the heat transfer performance, nanoparticles with higher thermal conductivity compared to that of base fluid are introduced into the base fluid. Main parameters affecting single-phase and two-phase heat transfer of nanofluids are shape, material type and average diameter of nanoparticles, mass fraction and stability of nanoparticles, surface roughness, and fluid inlet temperature. In this study, the effect of inlet temperature of deionized water/alumina (Al2O3) nanoparticle nanofluids was both experimentally and numerically investigated. Nanofluids with a mass fraction of 0.1% were tested inside a microtube having inner and outer diameters of 889 and 1,067 µm, respectively, for hydrodynamically developed and thermally developing laminar flows at Reynolds numbers of 650, 1,000, and 1,300. According to the obtained numerical and experimental results, the inlet temperature effect was more pronounced for the thermally developing region. The performance enhancement with nanoparticles was obtained at rather higher Reynolds numbers and near the inlet of the microtube. There was a good agreement between the experimental and numerical results so that the numerical approach could be further implemented in future studies on nanofluid flows.  相似文献   

11.
Thermal performance, transient behavior and operational start-up characteristics of flat-shaped heat pipes using nanofluids are analyzed in this work. Three different primary nanofluids namely, CuO, Al2O3, and TiO2 were utilized in our analysis. A comprehensive analytical model, which accounts in detail the heat transfer characteristics within the pipe wall and the wick within the condensation and evaporation sections, was utilized. The results illustrate enhancement in the heat pipe performance while achieving a reduction in the thermal resistance for both flat-plate and disk-shaped heat pipes throughout the transient process. It was shown that a higher concentration of nanoparticles increases the thermal performance of either the flat-plate or disk-shaped heat pipes. We have also established that for the same heat load a smaller size flat-shaped heat pipe can be utilized when using nanofluids.  相似文献   

12.
Two different kinds of non-Newtonian nanofluids were prepared by dispersion of Al2O3 and TiO2 nanoparticles in a 0.5 wt.% aqueous solution of carboxymethyl cellulose (CMC). Natural convection heat transfer of non-Newtonian nanofluids in a vertical cylinder uniformly heated from below and cooled from top was investigated experimentally. Results show that the heat transfer performance of nanofluids is significantly enhanced at low particle concentrations. Increasing nanoparticle concentration has a contrary effect on the heat transfer of nanofluids, so at concentrations greater than 1 vol.% of nanoparticles the heat transfer coefficient of nanofluids is less than that of the base fluid. Indeed it seems that for both nanofluids there exists an optimum nanoparticle concentration that heat transfer coefficient passes through a maximum. The optimum concentrations of Al2O3 and TiO2 nanofluids are about 0.2 and 0.1 vol.%, respectively. It is also observed that the heat transfer enhancement of TiO2 nanofluids is higher than that of the Al2O3 nanofluids. The effect of enclosure aspect ratio was also investigated. As expected, the heat transfer coefficient of nanofluids as well as the base fluid increases by increasing the aspect ratio.  相似文献   

13.
The present study was aimed to utilize low‐cost alumina (Al2O3) nanoparticles for improving the heat transfer behavior in an intercooler of two‐stage air compressor. Experimental investigation was carried out with three different volume concentrations of 0.5%, 0.75%, and 1.0% Al2O3/water nanofluids to assess the performance of the intercooler, that is, counterflow heat exchanger at different loads. Thermal properties such as thermal conductivity and overall heat transfer coefficient of nanofluid increased substantially with increasing concentration of Al2O3 nanoparticles. Specific heat capacity of nanofluids were lower than base water. The intercooler performance parameters such as effectiveness and efficiency improved appreciably with the employment of nanofluid. The efficiency increased by about 6.1% with maximum concentration of nanofluid, that is, 1% at 3‐bar compressor load. It is concluded from the study that high concentration of Al2O3 nanoparticles dispersion in water would offer better heat transfer performance of the intercooler.  相似文献   

14.
In this study an experimental investigation has been carried out to analyze the laminar forced convection of Al2O3/water and multiwall carbon nanotubes (MWCNT)/water nanofluids through uniformly heated horizontal circular pipe with helical twisted tape inserts. Tests were conducted for varied range of nanoparticle volume concentration (0.15%, 0.45%, 0.60%, and 1%) and helical tape inserts of twist ratios of 1.5, 2.5, and 3. The heat transfer enhancement and the increase of friction factor of nanofluids with helical inserts are compared with that of pure water results with plain tube without inserts. The Nusselt number is found to increase with the increase in Peclet number and nanofluid concentration. The MWCNT/water nanofluids with helical screw tape inserts exhibits higher thermal performance compared to Al2O3/water nanofluid. The maximum thermal performance factor was found to be 1.79 and 1.99 for Al2O3/water and MWCNT/water nanofluids with helical twisted tape inserts, respectively. The pressure drop for Al2O3 nanofluid is found to be higher compared to the MWCNT nanofluid for all the twist ratio of helical screw tape inserts.  相似文献   

15.
Binary nanofluids, nanoparticle suspensions in binary mixture, are developed to enhance the heat and mass transfer performance of absorption refrigeration cycles. To stabilize the nanoparticles in a strong electrolyte, polymer is used as a steric stabilizer. The effective thermal conductivities of the binary nanofluids with the concentrations of nanoparticle up to 0.1 vol% are measured using the transient hot wire method. Comparing the thermal conductivity change with time, it is found that the dispersion stability of nanofluids is a dominant factor for enhancing the thermal conductivity of binary nanofluids. It is also found that the thermal conductivity of the binary nanofluids (H2O/LiBr binary mixture with Al2O3 nanoparticles) increases with the particle volume concentration and enhances by 2.2% at 0.1 vol% concentration condition. Also a modified dimensionless group is proposed to find the maximum radius of nanoparticles to maintain stable nanofluids. In this study, it was estimated ~1.3 μm.  相似文献   

16.
The present paper is a comparison between heat transfer characteristics of Al2O3/water and CuO/water nanofluids through a square cross-section cupric duct in laminar flow under uniform heat flux. Sometimes because of pressure drop limitations the need for noncircular ducts arises in many heat transfer applications, and a testing facility has been constructed for this purpose and experimental studies were performed on both nanofluids under different nanoparticles concentrations in distilled water as a base fluid. The results indicate that a considerable heat transfer enhancement has been achieved by both nanofluids compared with base fluid. However, CuO/water nanofluid shows better heat transfer augmentation compared with Al2O3/water nanofluid through square cross-section duct.  相似文献   

17.
Heat transfer enhancement in a 3-D microchannel heat sink (MCHS) using nanofluids is investigated by a numerical study. The addition of nanoparticles to the coolant fluid changes its thermophysical properties in ways that are closely related to the type of nanoparticle, base fluid, particle volume fraction, particle size, and pumping power. The calculations in this work suggest that the best heat transfer enhancement can be obtained by using a system with an Al2O3–water nanofluid-cooled MCHS. Moreover, using base fluids with lower dynamic viscosity (such as water) and substrate materials with high thermal conductivity enhance the thermal performance of the MCHS. The results also show that as the particle volume fraction of the nanofluid increases, the thermal resistance first decreases and then increases. The lowest thermal resistance can be obtained by properly adjusting the volume fraction and pumping power under given geometric conditions. For a moderate range of particle sizes, the MCHS yields better performance when nanofluids with smaller nanoparticles are used. Furthermore, the overall thermal resistance of the MCHS is reduced significantly by increasing the pumping power. The heat transfer performance of Al2O3–water and diamond–water nanofluids was 21.6% better than that of pure water. The results reported here may facilitate improvements in the thermal performance of MCHSs.  相似文献   

18.
The turbulent flow of nanofluids with different volume concentrations of nanoparticles flowing through a two-dimensional duct under constant heat flux condition is analyzed numerically. The nanofluids considered are mixtures of copper oxide (CuO), alumina (Al2O3) and oxide titanium (TiO2) nanoparticles and water as the base fluid. All the thermophysical properties of nanofluids are temperature-dependent. The viscosity of nanofluids is obtained on basis of experimental data. The predicted Nusselt numbers exhibit good agreement with Gnielinski's correlation. The results show that by increasing the volume concentration, the wall shear stress and heat transfer rates increase. For a constant volume concentration and Reynolds number, the effect of CuO nanoparticles to enhance the Nusselt number is better than Al2O3 and TiO2 nanoparticles.  相似文献   

19.
The effect of nanofluids on thermal performance of the miniature heat pipe radiator which was assembled by two heat pipes containing 0.6 vol.% SiO2/water nanofluids and 30 pieces of rectangular aluminum fins was investigated experimentally and theoretically. The wall temperatures of the miniature heat pipe and fin surface temperatures were measured. Results showed that the utilization of SiO2/water nanofluids as a working fluid in the heat pipe enhanced the heat performance by reducing wall temperature differences. Compared with Deionized water (DI water), the thermal resistance of the miniature heat pipe with SiO2/water nanofluids decreased by about 23% to 40%. Furthermore, the theoretical calculation on a basis of one dimension found that the fin heat dissipation in the miniature heat pipe radiator charged SiO2/water nanofluids was about 1.17 times of that of the DI water radiator.  相似文献   

20.
The impact of the nanoparticles and ribs on the thermal performance of the rotating U-type cooling channel are investigated for turbulent forced convection flow of nanofluids. The nanofluids are provided by the inclusion of the nanoparticles of TiO2 and Al2O3 in water as the base fluid, namely, water/Al2O3 and water/TiO2 nanofluids mixtures. The simulations are performed for three-dimensional turbulent flow and heat transfer using an RNG k-? turbulence model for Reynolds number range of 5000 to 20,000. To show the effectiveness of the ribs and nanofluids, three criteria are employed: heat transfer enhancement, pressure drop or power consumed, and the thermal performance factor. It is found that the contribution of turbulence promotion in heat transfer enhancement of the ribbed channel is more effective than that of enlarging the heat surface area. The results show that using ribs at the lowest Reynolds number and utilizing nanofluids at the highest one provide high heat transfer rate and thermal performance. At the middle Reynolds numbers, the effects of these two methods on heat transfer enhancement are relatively close to each other. In this case, if the pumping power is the main concern, using nanofluids is recommended due to providing a smaller pressure drop penalty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号