首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用SIR-C SAR的C和L波段全极化数据,分析水面船只的极化散射特性和船只与背景海面雷达后向散射的信噪比特性,研究水面船只SAR探测的最优极化方式。结果显示,二面角散射是水面船只SAR成像的主要机理。线性极化中,HV极化具有最大的船只与背景海面雷达后向散射信噪比。与线性极化相比,圆极化的雷达后向散射信噪比更优。C波段和L波段的水面船只的极化散射特性存在较大的差异,L波段的信噪比大于C波段的信噪比。水面船只的雷达后向散射特性表明,L波段的圆极化是水面船只探测的最优极化方式。  相似文献   

2.
Waterline mapping in flooded vegetation from airborne SAR imagery   总被引:1,自引:0,他引:1  
Multifrequency, polarimetric airborne synthetic aperture radar (SAR) survey of a salt marsh on the east coast of the UK is used to investigate the radar backscattering properties of emergent salt marsh vegetation. Two characteristics of flooded vegetation are observed: backscatter enhanced by approximately 1.2 dB at C-band, and 180° HH-VV phase differences at L-band. Both are indicative of a double bounce backscattering mechanism between the horizontal water surface and upright emergent vegetation. The mapping of inundated vegetation is demonstrated for both these signatures, using a statistical active contour model for the C-band enhanced backscatter, and median filtering and thresholding for the L-band HH-VV phase difference. The two techniques are validated against the waterline derived from tidal elevation measured at the time of overpass intersected with an intertidal DEM derived from airborne laser altimetry. The inclusion of flooded vegetation is found to reduce errors in waterline location by a factor of approximately 2, equivalent to a reduction in waterline location error from 120 to 70 m. The DEM is also used to derive SAR waterline heights, which are observed to underpredict the tidal elevation due to the effects of vegetation. The underprediction can be corrected for vegetation effects using canopy height maps derived from the laser altimetry. This third technique is found to improve the systematic error in waterline heights from 20 to 4 cm, but little improvement in random error is evident, chiefly due to significant noise in the vegetation height map.  相似文献   

3.
The wave pattern generated by a moving ship is formed by two dominant features: the turbulent wake and a 'V'-shaped pattern trailing the ship, consisting of the two Kelvin arms. In this paper we investigate the radar imaging mechanism of Kelvin arms, which are formed by the cusp waves. A composite surface model for the radar backscattering at the ocean surface is used. The radar signatures of Kelvin arms can be attributed to tilt and hydrodynamic modulation of Bragg waves by the cusp waves. The proposed model allows the computation of the normalized radar backscattering cross-section (NRCS) as a function of radar frequency, polarization, incidence angle, wind speed and direction, and wavelength, direction, and slope of the cusp waves. By using this imaging model, radar signatures of cusp waves are calculated for several spaceborne Synthetic Aperture Radars (SARs): (1) the SEASAT L-band HH-polarized SAR, (2) the ERS-1/-2 VV-polarized SAR, (3) the RADARSAT C-band HH-polarized SAR, and (4) the X-, C- and L-band multipolarization SARs of the Space Radar Laboratory flown on the space shuttle during the SIRC/X-SAR mission in 1994. The results of the simulations are compared with SEASAT and SIR-C/X-SAR imagery of ship wake patterns. It is shown that the dependence of the observed radar signatures of Kelvin arms on radar look direction is consistent with the proposed imaging theory and that the measured relative mean NRCS values induced by Kelvin arms can be fairly well reproduced by the proposed model. The simulations indicate that ship wake signatures should be more clearly visible on SEASAT L-band SAR than on ERS-1/-2 or RADARSAT C-band SAR images. The radar signatures of Kelvin arms are strongest at low wind speeds and are not very sensitive to wind direction.  相似文献   

4.
The potential of synthetic aperture radar (SAR) in monitoring soil and vegetation parameters is being evaluated in extensive investigations, worldwide. A significant experiment on this subject, the Multi-sensor Airborne Campaign (MAC 91), was carried out in the summer of 1991 on several sites in Europe, based on the NASA/JPL polarimetric synthetic aperture radar (AIR-SAR). The site of Montespertoli (Italy) was imaged three times during this campaign at P-, L-, and C-band and at different incidence angles between 20° and 50°. Calibrated full polarimetric data collected over the agricultural area of this site have been analysed and a critical analysis of the information contained in linear and circular co-polar and cross-polar data has also been carried out. Here a guideline for the formulation of crop discrimination algorithms is suggested. It has been found that P-band data are rather effective only in discriminating broad classes of agricultural landscape, while finer detail can be obtained by integrating data at L- and C-bands. Indeed at L-band well developed ‘broad leaf’ crops can be separated from the others, whereas at C-band discrimination seems feasible in the case of moderate growth as well. Finally the sensitivity of backscattering coefficient to soil moiture and vegetation biomass is discussed.  相似文献   

5.
In Queensland, Australia, forest areas are discriminated from non-forest by applying a threshold (∼ 12%) to Landsat-derived Foliage Projected Cover (FPC) layers (equating to ∼ 20% canopy cover), which are produced routinely for the State. However, separation of woody regrowth following agricultural clearing cannot be undertaken with confidence, and is therefore not mapped routinely by State Agencies. Using fully polarimetric C-, L- and P-band NASA AIRSAR and Landsat FPC data for forests and agricultural land near Injune, central Queensland, we corroborate that woody regrowth dominated by Brigalow (Acacia harpophylla) cannot be discriminated using either FPC or indeed C-band data alone, because the rapid attainment of a canopy cover leads to similarities in both reflectance and backscatter with remnant forest. We also show that regrowth cannot be discriminated from non-forest areas using either L-band or P-band data alone. However, mapping can be achieved by thresholding and intersecting these layers, as regrowth is unique in supporting both a high FPC (> ∼ 12%) and C-band SAR backscatter (> ~ − 18 dB at HV polarisation) and low L-band and P-band SAR backscatter (e.g. < =∼ 14 dB at L-band HH polarisation). To provide a theoretical explanation, a wave scattering model based on that of Durden et al. [Durden, S.L., Van Zyl, J.J. & Zebker, H.A. (1989). Modelling and observation of radar polarization signature of forested areas. IEEE Trans. Geoscience and Remote Sensing, 27, 290-301.] was used to demonstrate that volume scattering from leaves and small branches in the upper canopy leads to increases in C-band backscattering (particularly HV polarisations) from regrowth, which increases proportionally with FPC. By contrast, low L-band and P-band backscatter occurs because of the lack of double bounce interactions at co-polarisations (particularly HH) and volume scattering at HV polarisation from the stems and branches, respectively, when their dimensions are smaller than the wavelength. Regrowth maps generated by applying simple thresholds to both FPC and AIRSAR L-band data showed a very close correspondence with those mapped using same-date 2.5 m Hymap data and an average 73.7% overlap with those mapped through time-series comparison of Landsat-derived land cover classifications. Regrowth mapped using Landsat-derived FPC from 1995 and JER-1 SAR data from 1994-1995 also corresponded with areas identified within the time-series classification and true colour stereo photographs for the same period. The integration of Landsat FPC and L-band SAR data is therefore expected to facilitate regrowth mapping across Queensland and other regions of Australia, particularly as Japan's Advanced Land Observing System (ALOS) Phase Arrayed L-band SAR (PALSAR), to be launched in 2006, will observe at both L-band HH and HV polarisations.  相似文献   

6.
Multifrequency X-, C-, and L-band synthetic aperture radar (SAR) images of the northern sea area off the isle of Heligoland in the German Bight of the North Sea have been analysed. The data were collected during the SAR and X-band Ocean Nonlinearities Research Platform North Sea Experiment (SAXON-FPN) which was carried out in November, 1990. Different oceanographic phenomena are visible on simultaneously obtained SAR images. Wind streaks and a vortex street can be identified only on the X- and C-band SAR images. Elongated streaks of predominantly low radar return are related to nearshore reefs and are imaged on all available radar scenes. The imaging mechanism of these submarine ridges is investigated and discussed using with some modifications the simple Bragg relaxation model proposed by Alpers and Hennings. The improved model differs from the original version in the representation of the unperturbed wave-energy spectral density. Also the advection term and the phase modulation (velocity bunching) have been included in the model. Due to the improvements it is now possible to simulate the radar cross-section modulation with the same order of magnitude at 0.4 GHz (X-band) and 5.3GHz (C-band) as well as at 1.3 GHz (L-band). However, the simulated radar cross-section modulation is still underestimated compared with the SAR data, but the phase of the calculated radar cross-section modulation agrees quite well with the SAR measurements.  相似文献   

7.
Snow cover has a substantial impact on processes involved in the interaction between atmosphere and surface, and the knowledge of snow parameters is important in both climatology and weather forecasting. With the upcoming launch of Advanced Synthetic Aperture Radar (ASAR) instruments on Envisat, enhanced snow-mapping capabilities are foreseen. In this paper fully polarimetric C- and L-band airborne SAR data, ERS SAR and auxiliary data from various snow conditions in mountainous areas are analysed in order to determine the optimum ASAR modes for snow monitoring. The data used in this study are from the Norwegian part of the snow and ice experiment within the European Multi-sensor Airborne Campaign (EMAC'95) acquired in the Kongsfjellet area, located in Norway, 66°?N, 14°?E. Fully polarimetric C- and L-band SAR data from ElectroMagnetic Institute SAR (EMISAR), an airborne instrument operated by the Danish Center for Remote Sensing (DCR), were acquired in March, May, and July 1995. In addition, several ERS SAR, airborne photos, field and auxiliary data were acquired.

A larger separation between wet snow and bare ground in EMISAR C-VV polarisation data was found at high incidence angle (55°) compared to lower incidence angle (45°). Cross-polarized observations from bare ground, dry and wet snow in the incidence angle range 35° to 65° are below the specified Envisat ASAR noise floor of –20–22 dB. The backscattering angular dependency for wet snow and bare ground derived from EMISAR C-VV and ERS SAR data corresponds well, and agrees to some extent with volume and surface scattering model results. The C-band is more sensitive to variation in snow properties than the L-band.  相似文献   

8.
Synthetic Aperture Radar (SAR) data has been investigated to determine the relationship between burn severity and interferometric coherence at three sites affected by forest fires in a hilly Mediterranean environment. Repeat-pass SAR images were available from the TerraSAR-X, ERS-1/2, Envisat ASAR and ALOS PALSAR sensors. Coherence was related to measurements of burn severity (Composite Burn Index) and remote sensing estimates expressed by the differenced normalized burn ratio (dNBR) index. In addition, the effects of topography and weather on coherence estimates were assessed. The analysis for a given range of local incidence angle showed that the co-polarized coherence increases with the increase of burn severity at X- and C-band whereas cross-polarized coherence was practically insensitive to burn severity. Higher sensitivity to burn severity was found at L-band for both co- and cross-polarized channels. The association strength between coherence and burn severity was strongest for images acquired under stable, dry environmental conditions. When the local incidence angle is accounted for the determination coefficients increased from 0.6 to 0.9 for X- and C-band. At L-band the local incidence angle had less influence on the association strength to burn severity.  相似文献   

9.
The role of synthetic aperture radar (SAR)-image-based flood area mapping is proved beyond the doubts. It is also well known that different wavelength, polarization SAR reacts in varying ways over the same land-use/land-cover region. In line to this, this article mainly brings out the significance of comparing and analysing different wavelength, polarization SAR data of the same inundated region against the land-use classes of the study area. The C-band ENVISAT advanced synthetic aperture radar data of vertically transmitted horizontally received (VH), vertically transmitted vertically received (VV) polarizations data, and L-band ALOS-1 PALSAR data of horizontally transmitted horizontally received (HH) polarization data has been obtained as both these satellites captured the same flood event of Andhra Pradesh state of India. Initially, the SAR images are classified with the help of digital elevation model of the disaster region which supports in mapping the fully submerged, partially submerged and non-flooded pixels of disaster region. The fully submerged regions includes the natural waterbodies, adjacent flood plain regions which are completely submerged, as well as not accessible, whereas the partially submerged regions are spatially discontinuous and scattered regions which are inundated due to recent disaster but accessible. In this study, much emphasis has been given in comparing and analysing the fully submerged, partially submerged, and non-flooded regions of classified SAR images against each land use of the disaster region by which the response of individual land-use units of the disaster region at different wavelength, polarization has been brought out. From this comparative assessment, it has been observed that the areal extent of fully submerged regions is considerably more in L-band HH image than in the C-band polarization images. It is also been noticed that C-band VH polarization image is able to map and quantify considerable part of the land-use classes as partially submerged regions than the L-band HH polarization image. In addition to this, the proposed technique is able to rectify in classifying mangrove regions as non-flooded regions due to the land-use/land-cover-based approach.  相似文献   

10.
Over the last two decades, the use of synthetic aperture radar (SAR) to address geologic problems has expanded as new applications for radar have been developed. One of the earliest and perhaps most surprising results from orbital SAR images of the Sahara was that, under certain conditions, radar signals penetrated up to several meters of sand to reveal subsurface features such as ancient river channels. Subsequent studies of radar penetration of arid sand deposits have dealt with factors that govern the ability of radar to penetrate a sand cover. This paper presents results from a laboratory experiment in which radar backscatter from a surface of rocks was measured under controlled conditions as a function of frequency, polarization, incidence angle, and sand cover thickness. The sand used in the experiment had a moisture content of 0.28 vol.% and caused calculated average attenuations of 4.2±1 dB/m for C-band and ∼11±2 dB/m for X-band. Results from the experiment were compared to field measurements of sand thickness during acquisition of airborne radar images. In AIRSAR images, the extent of dry sand in a dune field appears best in C-band because longer wavelength L- and P-band signals penetrate thinner sand deposits. Images of wet sand (4.9 vol.%) suggest that L-band was able to penetrate thin sand even though that sand was wet. Together, these laboratory and field measurements contribute towards a better understanding of how a sand cover modifies the radar backscatter of a surface.  相似文献   

11.
This article presents for the first time the combination of dual-polarimetric C-band Sentinel-1 synthetic aperture radar (SAR) data and quad-polarimetric L-band ALOS-2/PALSAR-2 imagery for mapping of flooded areas with a special focus on flooded vegetation. L-band SAR data is well suited for mapping of flooded vegetation, while C-band enables an accurate extraction open water areas. Polarimetric decomposition-based unsupervised Wishart classification is combined with object-based post-classification refinement and the integration of spatial contextual information and global auxiliary data. In eight different scenarios, focusing on single datasets or fusion of classification results of several ones, respectively, different polarimetric decomposition and classification principles, including the entropy/anisotropy/alpha and the Freeman–Durden–Wishart classification, were investigated. The helix scattering component of the Yamaguchi decomposition, derived from ALOS-2 imagery, showed high suitability to refine the Sentinel-1-based detection of flooded vegetation. A test site at the Evros River (Greek/Turkish border region) was chosen, which was affected by a flooding event that occurred in spring 2015. The validation was based on high spatial resolution optical WorldView-2 imagery acquired with short temporal delay to the SAR data.  相似文献   

12.
We investigated the possibility of using multiple polarization (SIR-C) L-band data to map forest biomass in a mountainous area in Siberia. The use of a digital elevation model (DEM) and a model-based method for reducing terrain effects was evaluated. We found that the available DEM data were not suitable to correct the topographic effects on the SIR-C radar images. A model-based slope correction was applied to an L-band cross-polarized (hv) backscattering image and found to reduce the topographic effect. A map of aboveground biomass was produced from the corrected image. The results indicated that multipolarization L-band synthetic aperture radar (SAR) data can be useful for estimation of total aboveground biomass of forest stands in mountainous areas.  相似文献   

13.
C-band SAR and X-band SLAR radar backscattering data collected over an agricultural area in The Netherlands, during the Agriscatt 1987 campaign, were compared and analysed in relation to type and structural properties of soil cover. The C- and X-band data were found to be similar in major trends. The variation in field-average radar backscattering values, however, was smaller in the C-band than in the X-band. Some fields showed a strong look direction dependence while others showed a strong polarization dependence of the backscattering. From field observation and from a theoretical analysis, incorporating the different structures and spatial orientations of the canopies elements, it was shown that non-uniform azimuthal distribution was the main cause for this phenomenon. It was concluded that these different types of backscattering behaviour can be two aspects of a single physical mechanism.

Signature interpretation problems may arise when these effects—non-uniform azimuthal distributions being caused by prevailing winds, lodging, harvesting or heliotropic behaviour-are not properly accounted for. This may be particularly important when monitoring systems like the ERS-I SAR are used, operating in two different look directions, i.e., in the ascending and descending nodes. For instance, in the data set investigated, the effect of look direction and state of polarization on the separation between classes of land cover type and condition was found to be large.  相似文献   

14.
Multi-temporal TerraSAR-X, ASAR/ENVISAT and PALSAR SAR data acquired at various incidence angles and polarizations were analyzed to study the potential of these new spaceborne SAR systems for monitoring sugarcane crops. The sensitivity of different radar parameters (wavelength, incidence angles, and polarization) to sugarcane growth stages was analyzed to determine the most suitable radar configuration for better characterisation of sugarcane fields and in particular the monitoring of sugarcane harvest.Correlation between backscattered signals and crop height was also carried out. Radar signal increased quickly with sugarcane height until a threshold height, which depended on radar wavelength and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is higher with longer wavelengths (L-band in comparison with C- and X-bands) and higher incidence angles (~ 40° in comparison with ~ 20°).The radar backscattering coefficients (σ°) were also compared to the Normalized Difference Vegetation Index (NDVI) calculated from SPOT-4/5 images. Results showed a high correlation between the behaviors of σ° and NDVI as a function of sugarcane crop parameters. A decrease in NDVI for fully mature sugarcane fields due to drying of the sugarcane (water stress) was also observed in the radar signal. This decrease in radar signal was of the same order as the decrease in radar signal after the sugarcane harvest. In general, it is more suitable to monitor the sugarcane harvest using high incidence angles regardless of the radar wavelength. SAR data in L- and C-bands showed an ambiguity between the signals of ploughed fields and those of fields in vegetation because of the high sensitivity of the radar signal at these wavelengths to surface roughness of bare soils. Indeed, sometimes the radar signal of ploughed fields was of the same order as that of harvested or mature sugarcane fields. Results showed better discrimination between ploughed fields and sugarcane fields in vegetation (sugarcane canopy) when using TerraSAR-X data (X-band).Concerning the influence of radar polarization, results showed that the co-polarizations channels (HH and VV) were well correlated, but had slightly less potential than cross-polarization channels (HV and VH) for the detection of the sugarcane harvest. Finally, SAR data at high spatial resolution were shown to be useful and necessary for better analysis of SAR images when the fields were of small size.  相似文献   

15.
This study combined a radar-based time series of Hurricane Sandy surge and estimated persistence with optical sensor-based marsh condition change to assess potential causal linkages of surge persistence and marsh condition change along the New Jersey Atlantic Ocean coast. Results based on processed TerraSAR-X and COSMO-SkyMed synthetic aperture radar (SAR) images indicated that surge flooding persisted for 12 h past landfall in marshes from Great Bay to Great Egg Harbor Bay and up to 59 h after landfall in many back-barrier lagoon marshes. Marsh condition change (i.e. loss of green marsh vegetation) was assessed from optical satellite images (Satellite Pour l’Observation de la Terre and Moderate Resolution Imaging Spectroradiometer) collected before and after Hurricane Sandy. High change in condition often showed spatial correspondence, with high surge persistence in marsh surrounding the lagoon portion of Great Bay, while in contrast, low change and high persistence spatial correspondence dominated the interior marshes of the Great Bay and Great Egg Harbor Bay estuaries. Salinity measurements suggest that these areas were influenced by freshwater discharges after landfall possibly mitigating damage. Back-barrier marshes outside these regions exhibited mixed correspondences. In some cases, topographic features supporting longer surge persistence suggested that non-correspondence between radar and optical data-based results may be due to differential resilience; however, in many cases, reference information was lacking to determine a reason for non-correspondence.  相似文献   

16.
Spaceborne synthetic aperture radar (SAR) can be used for agricultural monitoring. In this study, three single-polarimetric and four full-polarimetric observation data sets were analysed. A rice paddy field in northern Japan was used as the study site; the data for this site were obtained using RADARSAT-2, which carries a full-polarimetric C-band SAR. Soybean and grass fields were also present within the paddy fields. The temporal change in the backscattering coefficient of the rice paddy fields for the single-polarization data agreed with the temporal change obtained for a rice growth model based on radiative transfer theory. A three-component decomposition approach was applied to the full-polarimetric data. With each rice growth stage, the volume scattering component ratio increased, whereas the surface scattering component ratio generally decreased. The soybean and grass fields showed a smaller double-bounce scattering component than the rice fields for all the acquired data. The results of this study show that multitemporal observation by full-polarimetric SAR has great potential to be utilized for estimating rice-planted areas and monitoring rice growth.  相似文献   

17.
A microwave backscattering model for shrub clumps was presented. The modelling approach was to treat the clumps as scatterers and attenuators. Three major model components were defined: surface backscattering, clump volume scattering, and multiple path interactions between clumps and ground. Total backscatter was computed by incoherent summation of the components. We then used the model to study the effects of variations in surface and willow properties (soil moisture content, and surface roughness rms height and correlation length, and willow ground coverage, clump height, and stem density) on backscatter from willows in Alaskan boreal forest region. We examined the sensitivity to variations of the six parameters combined and to variation of each parameter alone from willows of three clump sizes representing different stages of vegetation regrowth after fire. Modelled C-band backscatter was more sensitive to the variations of the surface and willow parameters than L-band backscatter at incidence angles between 20° and 60°. At incidence angles of 20-60°, C-HH and C-VV backscatter was sensitive to the variations of the three surface parameters. L-HV and L-VV backscatter were only sensitive to the moisture variation. Among the three willow parameters, change of willow ground coverage produced more sensitive cases than variations of clump height and stem density combined at C- and L-band.  相似文献   

18.
合成孔径雷达(Synthetic Aperture Radar,SAR)由于其特有的全天时、全天候成像及对农作物的穿透探测能力,已成为农作物信息获取的重要手段。该文建立基于Matrix Doubling 算法的玉米多阶散射模型,以全极化雷达遥感数据Radarsat-2为数据源进行模型验证,在模型基础上,根据玉米关键生长期的几何参数,分析了玉米的时域散射特征;玉米不同生长期由于结构上的差异,散射特征差别很大:在玉米出苗期,小角度情况下C波段VV-HV适用于土壤湿度的提取;在玉米成熟期,大角度情况下C波段HH-HV较适合玉米叶片含水量的分析。  相似文献   

19.
An analytical model based on radar backscatter theory was utilized to retrieve sea surface wind speeds from C-band satellite synthetic aperture radar (SAR) data at either vertical (VV) or horizontal (HH) polarization in transmission and reception. The wind speeds were estimated from several ENVISAT Advanced SAR (ASAR) images in Hong Kong coastal waters and from Radarsat-1 SAR images along the west coast of North America. To evaluate the accuracy of the analytical model, the estimated wind speeds were compared to coincident buoy measurements, as well as winds retrieved by C-band empirical algorithms (CMOD4, CMOD_IRF2 and CMOD5). The comparison shows that the accuracy of the analytical model is comparable to that of the C-band empirical algorithms. The results indicate the capability of the analytical model for sea surface wind speed retrieval from SAR images at both VV and HH polarization.  相似文献   

20.
Because Synthetic Aperture Radar(SAR)can penetrate into forest canopy and interact with the primary stem volume contents of the trees (trunk and branch),SAR data are widely used for forest stem volume estimation.This paper investigated the correlation between SAR data and forest stem volume in Xunke,Heilongjiang using the stand-wise forest inventory data in 2003 and ALOS PALSAR data for five dates in 2007.The influences of season and polarizations on the relationship between stem volume and SAR data were studied by analyzing the scatterplots;that was followed by interpretation of the mechanisms primarily based on a forest radar backscattering model-water cloud model.The results showed that the relationship between HV polarization backscatter and stem volume is better than HH polarization,and SAR data in summer dry conditions are more correlated to stem volume than the data acquired in other conditions.The interferometric coherence with 46-day temporal baseline is negatively correlated to the stem volume.The correlation coefficients from winter coherence are higher than those from summer coherence and backscatter.The study results suggest using the interferometric coherence in winter as the best choice for forest stem volume estimation with L-band SAR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号