首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A steady-state performance model of multirow multipass cross-flow tubular heat exchangers is developed. The proposed matrix approach uses the concepts of local effectiveness, energy balance, and number of transfer units (NTU) applied to every pass/row in the cross-flow heat exchanger to predict thermal performance. The method can predict the total effectiveness of assemblies of heat exchangers. Several circuiting configurations, such as overall counter-cross-flow, overall parallel cross-flow, and fluids in parallel in one of the streams, were considered. Predictions of the steady heat transfer performance of selected multirow multipass cross-flow heat exchangers are obtained by applying the general matrix approach. The heat exchanger geometries selected for the comparative study represent common cross-flow heat exchanger configurations used in industry. For these heat exchangers the overall heat exchanger effectiveness values were computed for various capacity rate ratios and NTU values. The validity of the matrix approach was then verified by comparing the resulting predictions with those obtained using the P-NTU approach and the Domingos method for the selected complex cross-flow heat exchanger configurations.  相似文献   

2.
提出了一种新型再生式除湿换热器,建立了物理和数学模型。通过实验得到了该除湿换热器的实际动态除湿性能;将除湿器除湿性能的模拟结果与实验结果进行比较,验证了数学模型的可靠性。研究结果表明:该文研制的再生式除湿换热器具有良好的除湿性能,在给定工况(温度为24.7℃,含湿量为12.41g/kg)下除湿率可达到43.8%;还分析了处理风速、再生温度以及除湿换热器厚度对除湿性能和压降的影响,获得了使除湿换热器性能最佳的管排、翅片间距和迎面风速参数。  相似文献   

3.
应用有限时间热力学原理.建立了一个考虑热阻、热漏和回热损失等不可逆因素的斯特林发动机模型;推导了最大输出功率、最大效率和生态学优化准则下,斯特林发动机性能的表达式;比较了三种优化准则下,热漏系数和回热器有效性对斯特林发动机性能的影响.研究表明:对热漏损失和回热损失较大的斯特林发动机,宜选用生态学优化准则.为斯特林发动机...  相似文献   

4.
《Applied Thermal Engineering》2002,22(14):1673-1687
This work presents the use of a steady state simulator for the de-bottlenecking of heat recovery networks. It is shown how a heat exchanger network designed for fixed conditions can be de-bottlenecked when process streams undergo changes in operating conditions such as flow rate and supply temperature. A network is said to be flexible if it is capable of maintaining acceptable operation either during normal or under modified conditions. The de-bottlenecking of heat recovery networks can be considered as a special case of the design for improved flexibility. A simulation model for a single phase network of heat exchangers is presented. The model is based on the use of the thermal effectiveness (ε) parameter for heat exchangers. Any type of exchanger configuration and flow arrangement can be modeled by using the appropriate ε–number of transfer units relationships. A general methodology for improving network flexibility is proposed.  相似文献   

5.
The effectiveness–number of transfer units (NTU) relations are useful data for designing and performance evaluation of heat exchangers with fluids having considerable variation in velocities in the presence of heat leak. In this article, the closed-form (benchmark) solutions for counterflow heat exchangers, when the heat leak is either on the hot or cold side of the heat exchanger in the presence of kinetic energy variation, are presented. It was found that the effectiveness depends on NTU and fluid capacity ratio along with six other dimensionless variables that reflect the magnitude and axial distribution of the kinetic energy and heat leak on the hot and cold sides of the heat exchanger. The results are also presented in a graphical form exhibiting the variation of effectiveness of the heat exchanger with the already-mentioned parameters. It was demonstrated that when the dimensionless heat leak and kinetic energy terms approach zero, the solution reduces to the classical effectiveness–NTU relations for counterflow heat exchangers.  相似文献   

6.
A mathematical model is proposed to evaluate the frosting behavior of a fin–tube heat exchanger under frosting conditions. Empirical correlations of the heat transfer coefficients for the plate and tube surfaces and a diffusion equation for the frost layer are used to establish the model. The correlations for the heat transfer coefficients, derived from various experimental data, were obtained as functions of the Reynolds number and Prandtl number. The proposed model is validated by comparing the numerical results with experimental data for the frost thickness, frost accumulation, and heat transfer rate. The numerical results agree well with the experimental data. It is also found that this model can be applied to evaluate the thermal performance of a common fin–tube heat exchanger under frosting conditions.  相似文献   

7.
This paper conflates two heat exchanger design approaches – the ε-Ntu (effectiveness–number of transfer units) and the EGM (entropy generation minimization) – focusing on heat exchangers with uniform wall temperature, i.e. condensers and evaporators. An algebraic formulation which expresses the dimensionless rate of entropy generation as a function of the heat exchanger geometry (number of transfer units), the thermal-hydraulic characteristics (friction factor and Colburn j-factor), and the operating conditions (heat transfer duty, core velocity, surface temperature, and fluid properties) is derived. It is shown that there does exist a particular number of transfer units which minimizes the dimensionless rate of entropy generation. An algebraic expression for the optimum heat exchanger effectiveness, based on the working conditions, heat exchanger geometry and fluid properties, is also presented. The theoretical analysis led to the conclusion that a high effectiveness heat exchanger design does not necessarily provide the best thermal-hydraulic performance.  相似文献   

8.
面向太阳能热发电系统,建立一种空气-沙子移动床换热器实验平台,对其在不同参数下进行传热性能的实验研究.并基于实验数据,利用线性回归拟合得到表观气固传热系数的关联式,其整个实验工况预测值与实验值的平均误差为3.57%.研究结果表明:较高雷诺数可提升空气-沙子移动床换热器的传热效能,空气进口温度为281℃时,空气-沙子移动...  相似文献   

9.
Compact heat exchangers are very popular due to their effectiveness, small footprint and low cost. In order to protect heat exchangers in dirty applications, coatings can be applied to the heat transfer surfaces to extend effectiveness and minimize fouling. Coating selection is extremely important since the wrong coating can decrease unit effectiveness, cause more fouling, and/or erode the surface.An experimental investigation of coating effectiveness in compact plate heat exchangers is presented. New, cleaned and coated plate heat exchangers are considered in this study. Heat exchangers have been exposed to untreated lake water for various time periods. Transient effectiveness results compare the rate of fouling for coated and uncoated heat exchangers. Additional results compare deposit weight gain at the end of the test period and transient observations of heat transfer surface appearance. All heat exchanger combinations showed some deposit accumulation for the period considered.Results indicate that the thermal performance of the unit decreases with time, resulting in an undersized heat exchanger. For the conditions considered here, uncoated plates accumulate deposits up to 50% faster than coated plates and show a decrease in performance of up to 40%. Surface coating, exposure time, fluid velocity and concentration of particles can affect fouling.  相似文献   

10.
In this work, a modified analysis of a parallel-flow plate heat exchanger that takes into account a volumetrically uniform heat source in the hot fluid is presented. New expressions for the number of transfer units (NTU) and effectiveness of the heat exchanger are derived. These expressions are verified against the conventional effectiveness–NTU relations in the limit of zero heat source rate. This situation is of interest in applications such as the ammonia–water absorption absorber heat exchanger where a heat source is generated in the solution side. The model studies two cases based on the minimum and maximum heat capacities of the hot fluid. The results show that the number of transfer units and the effectiveness of the heat exchanger are the same for both cases. The analysis is applied to the absorber heat exchanger. Expressions of effectiveness and number of transfer units of a counterflow heat exchanger with a heat source in the hot fluid stream are also given from minimum and maximum heat capacities points of view.  相似文献   

11.
A thermodynamic analysis was made to study the effect of heat exchanger effectiveness on the performance of single stage vapour absorption heat transformers (VAHT). The working fluid pairs considered were R21-DMF and R21-DMETEG. Variations in the performance parameters such as coefficient of performance, exergetic efficiency, concentration difference and circulation ratio at different values of operating temperatures were studied. Among the two working pairs analysed, the R21-DMF pair yielded a high coefficient of performance and exergetic efficiency, whereas the R21-DMETEG pair yielded a high temperature lift at given operating conditions. The improvements in coefficient of performance and exergetic efficiency with heat exchanger effectiveness were more pronounced for R21-DMF than for R21-DMETEG. Correlations are presented for quick estimation of performance under various operating conditions.  相似文献   

12.
In this article, the heat transfer performance of a syngas cooler with membrane helical-coil heat exchanger was numerically studied. A method of combining piecewise simulation and full-scale simulation was proposed, and the influence of fly ash was considered. The models and the proposed method were validated by comparing simulation results with data from industrial test. The simulation results show that radiation accounts for 10–20% of the total heat transfer in the syngas cooler. The surface of inner channel is characterized with high convective heat-transfer coefficient and heat flux. In addition, the quality of produced steam could be significantly enhanced as the heat exchanger of upper group was changed from evaporating surface to superheating surface, and the cooling performance for syngas was hardly affected.  相似文献   

13.
《Applied Thermal Engineering》2007,27(11-12):2131-2137
When an extended surface is needed on only one fluid side (such as in a gas-to-liquid exchanger) or when the operating pressure needs to be contained on one fluid side, a tube-fin exchanger may be selected, with the tubes being round, flat, or elliptical in shape. The paper is concerned with the performance evaluation of flat tube fin heat exchangers (TFHE), having different fin configurations and flat tubes. The thermal performance of each configuration is based on the ε-NTU method. The extensive experimental research data of Kays and London available in the form of graphs are translated into algebraic relations for developing computational models. From the present work, a generalized heat transfer correlations is proposed based on geometrical parameters for the effectiveness of the heat exchanger. The generalization is with respect to the different fin surface geometry and not with the different combination of hot and cold fluids. The correlation is limited in its applicability to gas to water heat exchangers only. Further, guidelines are proposed for an easy way of designing a TFHE using correlations based on geometrical parameters and the same is compared with traditional ε-NTU method.  相似文献   

14.
The thermal performance of a Z-shaped enthalpy heat exchanger utilizing 45-gsm Kraft paper as the heat and moisture transfer surface for heating, ventilation, and air conditioning (HVAC) energy recovery is experimentally investigated through temperature and moisture content measurements. A mathematical model is developed and validated against the experimental results using the effectiveness-NTU method. In this model the paper moisture transfer resistance is determined by paper moisture permeability measurements. Results showed that the paper moisture transfer resistance is not constant and varies with moisture gradient across the paper. Furthermore, the model is used to predict the heat exchanger performance for different heat exchanger flow configurations. The results showed that higher effectiveness values are achieved when the heat exchanger flow path width is reduced. Temperature and moisture distribution in the heat exchanger is also studied using a computational fluid dynamics package (FLUENT). To model the moisture transfer through the porous materials a nondimensional sensible–latent effectiveness ratio was developed to obtain the moisture boundary conditions on the heat exchanger surface.  相似文献   

15.
An experimental investigation has been carried out to determine the operating performance of a rotating regenerative total energy wheel (TEW). A total energy wheel is a device which conserves both sensible and latent energies. It transfers heat from a warmer to a cooler airstream while simultaneously transferring moisture from a more humid to a less humid airstream. The effectiveness of a TEW device has been measured in a special experimental facility which incorporates features that enable the obtainment of data of high accuracy. The heart of the facility is a spacious, compartmented plenum chamber made from extruded, closed-cell polystyrene which is free of extraneous heat transfer and air leakage. The plenum allows for well-defined inlet and exit conditions for the heat/moisture exchanger being evaluated. Only the plenum need be reconfigured to accommodate each heat/moisture exchanger type, a task that can be performed in a day. The remainder of the facility is universal for all heat/moisture exchangers. Most of the instrumentation is located in the universal part of the facility and is not affected by plenum reconfigurations.  相似文献   

16.
This paper presents the performance investigation of a shell and helical coil type of Solution Heat Exchanger (SHX) in an ammonia–water vapour absorption system. In an absorption system, SHX is one of the major heat recovery components. The main objective of any heat exchanger design is to achieve minimum heat transfer area required for a given heat duty, as it governs the overall fixed cost content of such a system. The required surface area is decided by the overall heat transfer coefficient. Hence, the heat transfer coefficient (HTC) correlation plays a major role in optimizing the heat exchanger. In this paper, shell and helical coil type of SHX is investigated with more emphasis on the dimensionless correlation of shell side co-efficient, which decides the overall HTC and the size of heat exchanger. From the experimental study, shell side heat transfer coefficient of 510–650 W/m2 K is obtained with the heat exchanger effectiveness of 0.84–0.9 for the tested conditions. A proposed Nusselt number correlation is compared with the experimental results.  相似文献   

17.
In this paper, general solutions are obtained for the steady-state temperature of heat exchanging fluids along the length of a concentric tube heat exchanger. Heat exchanger effectiveness is also obtained in terms of the dimensionless exit temperature. Governing equations in non-dimensional differential form for the inner and outer fluid streams representing non-adiabatic conditions at the outside surface of the outer tube are solved analytically. Both counter-flow and parallel-flow cases are considered. Expressions for heat transfer to or from the outside are obtained. Exact agreement with the NTU method for adiabatic conditions at the outside surface and also the heat balance analysis provide validation of the generalized solution.  相似文献   

18.
An experimental study was conducted to investigate the effect of a tube row, a fin pitch and an inlet humidity on air-side heat and mass transfer performance of louvered fin-tube heat exchangers under wet condition. Experimental conditions were varied by three fin pitches, two rows, and two inlet relative humidities. From the experimental results, it was found that the heat transfer performance decreased and the friction increased with the decrease of a fin pitch, for 2 row heat exchanger. The effect of a fin pitch on heat transfer performance was negligible with 3 row heat exchanger. The change in a relative humidity was not affected heat transfer and friction. However, the mass transfer performance was slightly decreased with the increase of a relative humidity and with the decrease of a fin pitch. The mass transfer performance decreased with the decrease of a fin pitch. The mass transfer performance of the louvered fin-and-tube heat exchanger was different according to the number of a tube row.  相似文献   

19.
The present work aims to investigate the influence of extended surfaces (fins) on the multi-objective optimization of a tubular heat exchanger network (THEN). An increase in the heat transfer area using various extended surfaces (fins) to enhance the performance of the heat exchanger was used while considering the effectiveness and total heat transfer area as two objective functions. In addition to the simulation of simple fins, a new set of fins, called constructal fins, was designed based on the constructal theory. Tubular heat exchanger network design parameters were chosen as optimization variables, and optimization results were achieved in such a way as to enhance the effectiveness and decrease the total heat transfer area. The results show the importance of constructal fins in improving the objective functions of heat exchangers. For instance, the simple fins case enhances the effectiveness by up to 5.3% compared to that without fins (usual heat exchanger) while using constructal fins, in addition to the 7% increment of effectiveness, reduces the total heat transfer area by 9.47%. In order to optimize the heat exchanger, the heat transfer rate and cold fluid temperature must increase, and at the same time, the hot exiting fluid temperature should decrease at the same constant total heat transfer area, which is higher in the constructal fins case. Finally, optimized design variables were studied for different cases, and the effects of various fins were reported.  相似文献   

20.
In Part І, a numerical model for coupled heat and moisture transfer in a run-around heat and moisture exchanger with a liquid desiccant coupling fluid is developed. The numerical model is two dimensional, transient and is formulated using the finite difference method with an implicit time discretization. The results from the numerical model for the case of only heat transfer for a single heat exchanger are compared to an available analytical solution and good agreement is obtained. For the simultaneous heat and moisture transfer in the run-around membrane energy exchanger (RAMEE), a comparison between numerical model results and experimental measurements obtained from laboratory testing for both sensible and latent effectiveness showed satisfactory agreement at different operating conditions. Part II of this paper applies the model for a range of initial conditions [32].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号