首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim was to study asthma and allergy in relation to diet and the school environment. Pupils (5-14 years) in eight schools received a questionnaire, 1014 participated (68%). Settled dust was collected on ALK-filters and analyzed for allergens from cat (Fel d 1), dog (Can f 1), horse (Equ cx), house dust mites (Der p 1, Der f 1), and cockroach (Bla g 1) by ELISA. In total, 6.8% reported cat allergy, 4.8% dog allergy, 7.7% doctor's diagnosed asthma and 5.9% current asthma, and 7.8% reported wheeze. Current asthma was less common among those consuming more fresh milk (P < 0.05) and fish (P < 0.01). Poly-unsaturated fatty acids was associated with more wheeze (P < 0.05), olive oil was associated with less doctors' diagnosed asthma (P < 0.05). Totally, 74% of the classrooms had mean CO(2) <1000 ppm. The median concentration per gram dust was 860 ng/g Fel d 1, 750 ng/g Can f 1 and 954 U/g Equ cx. Horse allergen was associated with more wheeze (P < 0.05), daytime breathlessness (P < 0.05), current asthma (P < 0.05) and atopic sensitization (P < 0.05). Dog allergen was associated with wheeze (P < 0.05) and daytime breathlessness (P < 0.05). The associations between allergens and respiratory symptoms were more pronounced among those consuming margarine, not consuming butter, and with a low intake of milk. In conclusion, cat, dog and horse allergens in schools could be a risk factor for asthma and atopic sensitization, and dietary factors may interact with the allergen exposure. PRACTICAL IMPLICATIONS: Previous school studies performed by us in mid-Sweden, showed that most classrooms did not fulfill the ventilation standards. In this study, most of the classrooms fulfilled the ventilation standard, but despite that had widespread allergen contamination. Most previous studies have focused on cat allergen, but our study has shown that also dog and horse allergens can be risk factors for asthma and allergy in schools. As allergens are transported from other environments, mainly the home environment, the main prevention should be to minimize transfer of allergens. This could be achieved by reducing contacts with furry pets and horses, or using different clothes at home and at school (e.g. school uniforms). Increased cleaning in the schools may reduce allergen levels, but the efficiency of this measure must be evaluated in further intervention studies. Finally, our study supports the view that dietary habits among pupils should not be neglected and interaction between dietary factors and indoor allergen exposure needs to be further investigated.  相似文献   

2.
Kim JL  Elfman L  Norbäck D 《Indoor air》2007,17(2):122-129
We studied reports on respiratory symptoms, asthma and atopic sensitisation in relation to allergen contamination in Korean schools and compared with data from a previous Swedish study performed in eight primary schools. Korean pupils (n = 2365) in 12 primary schools first completed a questionnaire. Then airborne and settled dust were collected from 34 classrooms and analyzed for allergens by ELISA. In both countries, boys reported more symptoms. The prevalence of wheeze was similar, while daytime [odds ratio (OR) = 14.0, 95% confidence interval (CI) = 9.0-21.9] and nocturnal breathlessness (OR = 3.1, 95% CI = 1.5-6.4) were much higher among Korean students. In Korean schools, dog allergen (Can f 1) was the most common followed by mite allergen (Der f 1), while cat (Fel d 1), dog, and horse allergen (Equ cx) were abundant in Sweden. Moreover, CO(2) levels were high in most Korean schools (range 907-4113 ppm). There was an association between allergen levels in dust and air samples, and number of pet-keepers in the classrooms. In conclusion, allergen contamination in Korean schools may be an important public issue. PRACTICAL IMPLICATIONS: This study showed that furry pet allergen contamination was common in both Korean and Swedish schools. In addition, house dust-mite (Der f 1) allergen contamination was common in Korean schools, probably because of transport of allergen from other environments. Transfer should therefore be minimized. Korean schools had high CO(2) levels and the concept of mechanical ventilation should be introduced. Measurement of airborne allergen levels is quite new and seems to be a more convenient and correct way to monitor allergen exposure in classrooms.  相似文献   

3.
Allergy to indoor allergens can cause frequent and severe health problems in children. Because little is known about the content of allergens in the indoor environments in Norway, we wanted to assess the levels of cat, dog and mite allergens in schools and day-care centers in Oslo. Allergen levels in dust samples from 155 classrooms and 81 day-care units were measured using commercially available enzyme-linked immunosorbent assay (ELISA) kits. Additionally, we measured the levels of endotoxin in 31 day-care units, using the limulus amebocyte lysate test. Most of the dust samples contained detectable amounts of cat and dog allergens. In mattress and floor dust (day-care centers), and curtain and floor dust (schools) the median Fel d 1 levels were 0.17, 0.002, 0.02 and 0.079 microg/m2, while the median Can f 1 levels were 1.7, 0.03, 0.1 and 0.69 microg/m2, respectively. Levels of cat and dog allergens in school floor dust were associated with the number of pupils with animals at home. In contrast, <1% of the samples had measurable levels of the mite allergen Der p 1. Moreover, the levels of endotoxin tended to be higher in dust from floors (1.4 ng/m2) compared with that from mattresses (0.9 ng/m2). PRACTICAL IMPLICATIONS: To reduce allergen exposure, allergic individuals should be placed in the classes/rooms with the fewest pet owners. Moreover, mattresses in day-care centers are major reservoirs of cat and dog allergens and should be cleaned frequently.  相似文献   

4.
BACKGROUND: Exposure to indoor allergens has already been shown to occur in many public places, including workplaces, in several countries. Aim of this study was to measure the levels of house dust mites, cat and cockroach allergens in indoor workplaces (offices and archives) in Italy and to evaluate the possible relationships between allergen levels and building characteristics, type of ventilation, indoor relative humidity and temperature. METHODS: Der f 1 and Der p 1, Fel d 1, Bla g 2 were measured by ELISA in dust samples collected from floors or upholstered seats of 160 workplaces. RESULTS: Detectable Der p 1 levels were found in 86 (54%) workplaces Der f 1 in 87 (55%), Fel d 1 in 86 (54%) and Bla g 2 in 3 (1.9%). Der p 1 allergen concentrations expressed per weight were higher than the proposed sensitization thresholds in 7 samples, Der f 1 in 5, Fel d 1 in 6 and Bla g 2 in 3. The highest allergen levels were detected in samples from upholstered seats. A significant correlation was found between Der f 1 level on floors, expressed per surface, and indoor temperature (r = 0.39; P < 0.01). CONCLUSIONS: In our study we found that upholstered seats in workplaces in Italy may constitute a significant reservoir both of house dust mites and cat allergens. Exposure to these allergens in workplaces may represent a risk factor for elicitation of symptoms and/or induction/maintenance of inflammation in allergic individuals and might also constitute a risk factor for sensitization.  相似文献   

5.
We investigated asthma and atopy in relation to microbial and plasticizer exposure. Pupils in eight primary schools in Uppsala (Sweden) answered a questionnaire, 1014 (68%) participated. Totally, 7.7% reported doctor-diagnosed asthma, 5.9% current asthma, and 12.2% allergy to pollen/pets. Wheeze was reported by 7.8%, 4.5% reported daytime breathlessness, and 2.0% nocturnal breathlessness. Measurements were performed in 23 classrooms (May-June), 74% had <1000 ppm CO(2) indoors. None had visible mold growth or dampness. Mean total microbial volatile organic compound (MVOC) concentration was 423 ng/m(3) indoors and 123 ng/m(3) outdoors. Indoor concentration of TMPD-MIB (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, Texanol) and TMPD-DIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate, TXIB), two common plasticizers, were 0.89 and 1.64 microg/m(3), respectively. MVOC and plasticizer concentration were correlated (r = 0.5; P < 0.01). Mold concentration was 360 cfu/m(3) indoors and 980 cfu/m(3) outdoors. At higher indoor concentrations of total MVOC, nocturnal breathlessness (P < 0.01) and doctor-diagnosed asthma (P < 0.05) were more common. Moreover, there were positive associations between nocturnal breathlessness and 3-methylfuran (P < 0.01), 3-methyl-1-butanol (P < 0.05), dimethyldisulfide (P < 0.01), 2-heptanone (P < 0.01), 1-octen-3-ol (P < 0.05), 3-octanone (P < 0.05), TMPD-MIB (P < 0.05), and TMPD-DIB (P < 0.01). TMPD-DIB was positively associated with wheeze (P < 0.05), daytime breathlessness (P < 0.05), doctor-diagnosed asthma (P < 0.05), and current asthma (P < 0.05). In conclusion, exposure to MVOC and plasticizers at school may be a risk factor for asthmatic symptoms in children. PRACTICAL IMPLICATIONS: Despite generally good ventilation and lack of visible signs of mold growth, we found an association between respiratory symptoms and indoor MVOC concentration. In addition, we found associations between asthmatic symptoms and two common plasticizers. The highest levels of MVOC, TMPD-MIB, and TMPD-DIB were found in two new buildings, suggesting that material emissions should be better controlled. As MVOC and plasticizers concentrations were positively correlated, while indoor viable molds and bacteria were negatively correlated, it is unclear if indoor MVOC is an indicator of microbial exposure. Further studies focusing on health effects of chemical emissions from indoor plastic materials, including PVC-floor coatings, are needed.  相似文献   

6.
Ko G  Burge HA 《Indoor air》2004,14(6):434-438
The purpose of this study was to evaluate the effects of furniture polish (FP) on the release of cat allergen (Fel d 1)-laden dust from wood surfaces and decay of Fel d 1 in dust over time. About 2 g of sieved (150 microm screen) allergen-laden dust was introduced as an aerosol into an experimental chamber by a Pitt-3 generator and allowed to settle onto two finished wood surfaces pre-treated with either distilled water (DW) or FP. After 24 h, each surface was vacuumed into separate plastic cassettes loaded with 37 mm diameter, 0.4 microm pore, polycarbonate filters. The recovered dust was weighed, extracted in phosphate-buffered saline, and assayed for Fel d 1 content using a two-site monoclonal antibody ELISA. After vacuuming, the remaining dust on the wood surfaces was wiped up with a water-moistened swab. The dusts were extracted from the swabs and assayed by ELISA for Fel d 1. More Fel d 1 was recovered by vacuuming from DW-pre-treated surfaces than from FP pre-treated surfaces (100% vs. 69 +/- 66%). On the contrary, more residual Fel d 1 (>99.9%) on the vacuumed surfaces was recovered from FP than from DW pre-treated surfaces by wet swabs. The concentration of Fel d 1 in dust did not change significantly at room temperature over 80 days. In conclusion, FP on wood surfaces makes dust stick to the surface, which likely reduces the release of allergen-laden dust from the wood surface. PRACTICAL IMPLICATIONS: Re-aerosolization of cat allergen-laden dusts from wood surfaces (e.g. wood floor or furniture) significantly increases the concentration of airborne cat allergens. Our study indicates that exposure to airborne cat allergens might be reduced by surface treatment with commercially available FP because cat allergen-laden dusts stuck more tightly to the wood surface treated with FP.  相似文献   

7.
Mi YH  Norbäck D  Tao J  Mi YL  Ferm M 《Indoor air》2006,16(6):454-464
We investigated 10 naturally ventilated schools in Shanghai, in winter. Pupils (13-14 years) in 30 classes received a questionnaire, 1414 participated (99%). Classroom temperatures were 13-21 degrees C (mean 17 degrees C), relative air humidity was 36-82% (mean 56%). The air exchange rate was 2.9-29.4 ac/h (mean 9.1), because of window opening. Mean CO2 exceeded 1000 ppm in 45% of the classrooms. NO2 levels were 33-85 microg/m3 indoors, and 45-80 microg/m3 outdoors. Ozone were 1-9 microg/m3 indoors and 17-28 microg/m3 outdoors. In total, 8.9% had doctors' diagnosed asthma, 3.1% wheeze, 23.0% daytime breathlessness, 2.4% current asthma, and 2.3% asthma medication. Multiple logistic regression was applied. Observed indoor molds was associated with asthma attacks [odds ratio (OR) = 2.40: P < 0.05]. Indoor temperature was associated with daytime breathlessness (OR = 1.26 for 1 C; P < 0.001), and indoor CO2 with current asthma (OR = 1.18 for 100 ppm; P < 0.01) and asthma medication (OR = 1.15 for 100 ppm; P < 0.05). Indoor NO2 was associated with current asthma (OR = 1.51 for 10 microg/m3; P < 0.01) and asthma medication (OR = 1.45 for 10 microg/m3; P < 0.01). Outdoor NO2 was associated with current asthma (OR = 1.44 for 10 microg/m3; P < 0.05). Indoor and outdoor ozone was negatively associated with daytime breathlessness. In conclusion, asthma symptoms among pupils in Shanghai can be influenced by lack of ventilation and outdoor air pollution from traffic. Practical Implications Most urban schools in Asia are naturally ventilated buildings, often situated in areas with heavy ambient air pollution from industry or traffic. The classes are large, and window opening is the only way to remove indoor pollutants, but this results in increased exposure to outdoor air pollution. There is a clear need to improve the indoor environment in these schools. Building dampness and indoor mold growth should be avoided, and the concept of mechanical ventilation should be introduced. City planning aiming to situate new schools away from roads with heavy traffic should be considered.  相似文献   

8.
Allergen exposure is a risk to develop an IgE-mediated sensitization. The amount of allergen inhaled per unit time should be related to the amount present in the air, i.e. airborne allergen. Thus, measuring allergen levels in the air would be more relevant than measuring allergen levels in dust. Allergens are present in the air in very minute quantities and usually become airborne after disturbance. Large variation of allergen levels have been found in dust. In this study, we measured variability of airborne cat allergen, Fel d1, in a public place using a high-volume air-sampler. We also studied the distribution and relationship between dust and airborne cat allergens in homes and schools. Air samples were collected at three different airflow rates, i.e. 55, 40, and 30 m3 of air per hour. The concentration of airborne Fel d1 in the community gymnastic hall varied from 1 to 10 pg/m3 within a period of 3 weeks, at airflow rates 55-30 m3/h. The coefficient of variation for repeated samplings was 14-43% (day-to-day variation) and 27-38% (within-day variation). As expected, higher levels of airborne cat allergens were found in homes with cats than in cat-free environments. There was a significant relationship between cat allergen levels in dust and air (r=0.7, P<0.01). Our study demonstrates that when measuring airborne cat allergen a large variation is observed within a day and between days. The large variability of measurement may be explained by the disturbance in the environments. We suggest, that when exposure assessment is made the environment in question should be analyzed, if possible in several occasions.  相似文献   

9.
Mite allergens are involved in airway sensitization and allergic diseases. We evaluated the exposure to house dust-mite (Der p 1 and Der f 1) and pet (Fel d 1 and Can f 1) allergens in hotels in Uberlandia, Midwestern Brazil. A total of 140 dust samples were collected from bedding (n = 98) and carpet (n = 42) of bedrooms in 20 hotels enrolled for this study. Geometric mean (GM) levels of Der f 1 (11.30 microg/g of dust; 95% CI: 8.34-15.30 microg/g) were significantly higher than Der p 1 (0.15 microg/g of dust; 95% CI: 0.13-0.18 microg/g) in bedding dust samples (P < 0.001), regardless of the hotel classes. Der f 1 levels were significantly higher in bedding (11.30 microg/g of dust; 95% CI: 8.34-15.30 microg/g) than carpet (6.32 microg/g of dust; 95% CI: 4.31-9.26 microg/g) dust samples (P < 0.05). High levels of Der f 1 (>10 microg/g of dust) were found in 58%, 76%, and 69% of dust samples from Simple, Economical, and Tourist/Superior hotels, respectively, while GM levels of Fel d 1 (0.11 microg/g of dust; 95% CI: 0.09-0.14 microg/g) and Can f 1 (0.30 microg/g of dust; 95% CI: 0.20-0.44 microg/g) were relatively low. These results indicate that Der f 1 is the predominant allergen in hotels in Uberlandia, especially in bedding dust samples, regardless of the hotel classes and could represent an important risk factor for exacerbation of allergic symptoms in previously mite-sensitized guests. PRACTICAL IMPLICATIONS: Mites and pets are important sources of indoor allergens. Most people spend the greatest part of their time indoors. Hotels can constitute an important allergen reservoir of the indoor environment and could represent an important risk for exacerbation of allergic symptoms in previously sensitized guests. Thus, hotels should also be included for planning indoor allergen avoidance as part of a global management strategy, especially in patients with respiratory allergy.  相似文献   

10.
Previous studies, often using data from questionnaires, have reported associations between various characteristics of indoor environments and allergic disease. The aim of this study has been to investigate possible associations between objectively assessed indoor environmental factors and clinically confirmed asthma, rhinoconjunctivitis, and atopic dermatitis. The study is a cross‐sectional case–control study of 500 children aged 3–5 years from Odense, Denmark. The 200 cases had at least two parentally reported allergic diseases, while the 300 controls were randomly selected from 2835 participating families. A single physician conducted clinical examinations of all 500 children. Children from the initially random control group with clinically confirmed allergic disease were subsequently excluded from the control group and admitted in the case group, leaving 242 in the healthy control group. For most children, specific IgE's against various allergens were determined. In parallel, dust samples were collected and air change rates were measured in the children's bedrooms. The dust samples were analyzed for phthalate esters, polycyclic aromatic hydrocarbons (PAH), nicotine, and various allergens. Among children diagnosed with asthma, concentrations of nicotine were higher (P < 0.05) and cat allergens were lower (P < 0.05) compared with the healthy controls; air change rates were lower for those sensitized (specific IgE+) compared with those not sensitized (specific IgE?, P < 0.05); and dust mite allergens were higher for specific IgE+ cases compared with healthy controls (P < 0.05). When disease status was based solely on questionnaire responses (as opposed to physician diagnosis), significant associations were found between di(2‐ethylhexyl) phthalate (DEHP) and dog allergens in dust and current wheeze.  相似文献   

11.
Smedje G  Norbäck D 《Indoor air》2001,11(2):127-133
In order to study the influence of furnishings and cleaning on the indoor air quality at school, 181 randomly chosen classrooms were investigated. The amounts of open shelves, textiles and other fittings were noted, data were gathered on cleaning routines, and a number of pollutants were measured in the classrooms. In classrooms with more fabrics there was more settled dust and the concentration of formaldehyde was higher. Classrooms with more open shelves had more formaldehyde, and more pet allergens in settled dust, and classrooms with a white board, instead of a chalk board, were less dusty. Classrooms mainly cleaned through wet mopping had more airborne viable bacteria but less settled dust than classrooms mainly cleaned by dry methods. In rooms where the desks and curtains were more often cleaned, the concentrations of cat and dog allergen in settled dust were lower. It is concluded that furnishings and textiles in the classroom act as significant reservoirs of irritants and allergens and have an impact on the indoor air quality at school.  相似文献   

12.
Exposure to allergens from house dust-mites (Der p 1) and domestic cats (Fel d 1) is associated with symptom severity in atopic subjects with asthma and rhinitis. Assessment of allergen exposure in the domestic environment is normally determined by measurement from a single floor site. We determined the variability of these allergens and protein throughout the whole living room floor area. Dust samples were collected from 1 m2 areas from 16 carpeted living room floors in Wellington, New Zealand, and analyzed for concentrations of Der p 1 and Fel d 1. Mean coefficients of variation for Der p 1 and Fel d 1 were 53.1% (range: 28.5-136.8) and 65.6% (range: 28.5-131.0), respectively. This study has demonstrated a large variation of house dust-mite and cat allergens within living room floors and thus assessment of a single sampling site may not be representative of an individual's exposure risk. House dust-mite and cat allergen levels from the center of the room, in front of a couch or chair, or from a corner of the room are similar to mean levels from the whole room. These sites may thus be representative of the whole living room floor in large-scale epidemiological studies.  相似文献   

13.
Allergens in indoor air: environmental assessment and health effects   总被引:2,自引:0,他引:2  
It has been suggested that the increase in morbidity and mortality for asthma and allergies, may also be due to an increase in exposure to allergens in the modern indoor environment. Indoor allergen exposure is recognised as the most important risk factor for asthma in children. House dust mites, pets, insects, plants, moulds and chemical agents in the indoor environment are important causes of allergic diseases. House dust mites and their debris and excrements that contain the allergens are normally found in the home in beds, mattresses, pillows, carpets and furniture stuffing, but they have also been found in office environments. Domestic animals such as cats, dogs, birds and rodents may cause allergic asthma and rhinoconjunctivitis. The exposure usually occurs in homes, but also in schools and kindergartens where domestic animals are kept as pets or for education; moreover, cat and dog owners can bring allergens to public areas in their clothes. Allergy to natural rubber latex has become an important occupational health concern in recent years, particularly among healthcare workers; when powdered gloves are worn or changed, latex particles get into the air and workers are exposed to latex aerosolised antigens. To assess the environmental risk to allergen exposure or to verify if there is a causal relationship between the immunologic findings in a patient and his/her environmental exposure, sampling from the suspected environment may be necessary.  相似文献   

14.
Exposure to allergens from house dust-mites (Der p 1) and domestic cats (Fel d 1) is associated with symptom severity in atopic subjects with asthma and rhinitis. Assessment of allergen exposure in the domestic environment is normally determined by measurement from a single floor site. We determined the variability of these allergens and protein throughout the whole living room floor area. Dust samples were collected from 1 m2 areas from 16 carpeted living room floors in Wellington, New Zealand, and analyzed for concentrations of Der p 1 and Fel d 1. Mean coefficients of variation for Der p 1 and Fel d 1 were 53.1% (range: 28.5-136.8) and 65.6% (range: 28.5-131), respectively. This study has demonstrated a large variation of house dust-mite and cat allergens within living room floors and thus a single sampling site may not be representative for assessment of an individual's exposure risk. House dust-mite and cat allergen levels from the center of the room, in front of a couch or chair, or from a corner of the room are similar to mean levels from the whole room, these sites may thus be representative of the whole living room floor in large-scale epidemiological studies.  相似文献   

15.
There are few longitudinal studies on sick building syndrome (SBS), which include ocular, nasal, throat, and dermal symptoms, headache, and fatigue. We studied the associations between selected microbial components, fungal DNA, furry pet allergens, and incidence and remission of SBS symptoms in schools in Taiyuan, China. The study was based on a two-year prospective analysis in pupils (N = 1143) in a random sample of schools in China. Settled dust in the classrooms was collected by vacuum cleaning and analyzed for lipopolysaccharide (LPS), muramic acid (MuA), and ergosterol (Erg). Airborne dust was collected in Petri dishes and analyzed for cat and dog allergens and fungal DNA. The relationship between the concentration of allergens and microbial compounds and new onset of SBS was analyzed by multi-level logistic regression. The prevalence of mucosal and general symptoms was 33% and 28%, respectively, at baseline, and increased during follow-up. At baseline, 27% reported at least one symptom that improved when away from school (school-related symptoms). New onset of mucosal symptoms was negatively associated with concentration of MuA, total LPS, and shorter lengths of 3-hydroxy fatty acids from LPS, C14, C16, and C18. Onset of general symptoms was negatively associated with C18 LPS. Onset of school-related symptoms was negatively associated with C16 LPS, but positively associated with total fungal DNA. In general, bacterial compounds (LPS and MuA) seem to protect against the development of mucosal and general symptoms, but fungal exposure measured as fungal DNA could increase the incidence of school-related symptoms.  相似文献   

16.
Distribution variations of multi allergens at asthmatic children's homes   总被引:1,自引:0,他引:1  
Increasing asthma prevalence is evident in many countries and childhood asthma has also become one of the most common chronic diseases in children. Exposure to indoor allergens has been be attributed to a significant increase in asthma occurrence. Meanwhile, allergen distribution varies widely among different countries. This brief investigation reports the distribution of common indoor allergens, such as mite (Dermatophagoides pteronyssinus, Der p 1 and Der p 2), cat (Felis domesticus, Fel d 1), and German cockroach allergens (Blattella germanica, Bla g 1) at different sites of asthmatic children in Taiwan. Approximately 40 asthmatic children's homes participated in this study and the cohort was followed prospectively for approximately 6 months, starting in December until the following May. Dust samples were collected from each child's mattress, and bedroom and living room floors. All samples were analyzed with monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA). Statistical difference of Der p 1 concen trations is observed among those on the mattress, bedroom and living room floor, except for in May. Seasonal variation in Der p 1 levels on the mattress and bedroom floor is also significant (P < 0.025 and 0.001, respectively). Distributional variation seems to be significant for most allergens among sites within homes in most seasons. Therefore, if only one sample is to be taken, the month of May would be a more ideal choice of study period, and detailed sampling across sites appears to be necessary should the true environmental exposure of allergens be desired.  相似文献   

17.
Considering that high school students spend a large proportion of their waking hours in the school environment, this could be an important location for exposure to indoor allergens. We have investigated the levels of mouse and cockroach allergens in the settled dust and air from 11 schools in a major northeastern US city. Settled dust samples were vacuumed from 87 classrooms, three times throughout the school year. Two separate air samples (flow = 2.5 lpm) were collected by 53 students over a 5-day period from both their school and their home. Mouse allergen (MUP) in the dust varied greatly between schools with geometric means ranging from 0.21 to 133 microg/g. Mouse allergen was detectable in 81% of the samples collected. Cockroach allergen (Bla g 2) ranged from below limit of detection (<0.003 microg/g) to 1.1 microg/g. Cockroach allergen was detected (>0.003 microg/g) in 71% of the dust samples. Bla g 2 was detected in 22% of airborne samples from the schools. By comparison, mouse allergen was only detected in 5%. These results indicate that the school may be an important location for exposure to allergens from mice and cockroaches and is an indoor environment that should be considered in an overall allergen intervention strategy. PRACTICAL IMPLICATIONS: To date, cockroach and mouse allergen intervention strategies have been mainly focused on the home environment. Considering that children spend a significant amount of time in schools, some studies have assessed cockroach allergen levels in schools. This study provides a clearer picture of the distribution and variability of not only cockroach allergen, but also mouse allergen in the school environment. In addition, this study describes limitations of personal air sampling in a student population. Our results suggest that although cockroach and mouse allergens are commonly recovered in classroom dust samples of inner city schools, cockroach allergens are recovered in the personal air samples with a greater frequency relative to mouse allergens.  相似文献   

18.
Studies that estimate indoor aeroallergen exposure typically measure a pre‐selected limited range of allergens. In this study, inhalable aeroallergen particles were quantified using the halogen immunoassay (HIA) to determine the contribution of fungal and non‐fungal aeroallergens to total allergen exposure. Bioaerosols from 39 homes of fungal‐allergic subjects were sampled using inhalable fraction samplers and immunostained by HIA using resident subject's immunoglobulin E (IgE) to detect allergen‐laden particles. Fungal aerosols as well as particles carrying mite, cat, and cockroach allergens were identified and enumerated by HIA. Reservoir dust‐mite (Der p 1), cat (Fel d 1), and cockroach (Bla g 1) allergen concentrations were quantified by ELISA. Fungal particles that bound subject's IgE in the HIA were 1.7 (bedroom)‐ and 1.4 (living room)‐fold more concentrated than Der p 1, Fel d 1, and Bla g 1 allergen particles combined. Predominant fungal conidia that bound IgE were derived from common environmental genera including Cladosporium and other fungi that produce amerospores. Airborne mite, cat, and cockroach allergen particle counts were not associated with reservoir concentrations determined by ELISA. This study demonstrates that inhalable fungal aerosols are the predominant aeroallergen sources in Sydney homes and should be considered in future exposure assessments.  相似文献   

19.
We reviewed the literature on Indoor Air Quality (IAQ), ventilation, and building-related health problems in schools and identified commonly reported building-related health symptoms involving schools until 1999. We collected existing data on ventilation rates, carbon dioxide (CO2) concentrations and symptom-relevant indoor air contaminants, and evaluated information on causal relationships between pollutant exposures and health symptoms. Reported ventilation and CO2 data strongly indicate that ventilation is inadequate in many classrooms, possibly leading to health symptoms. Adequate ventilation should be a major focus of design or remediation efforts. Total volatile organic compounds, formaldehyde (HCHO) and microbiological contaminants are reported. Low HCHO concentrations were unlikely to cause acute irritant symptoms (<0.05 ppm), but possibly increased risks for allergen sensitivities, chronic irritation, and cancer. Reported microbiological contaminants included allergens in deposited dust, fungi, and bacteria. Levels of specific allergens were sufficient to cause symptoms in allergic occupants. Measurements of airborne bacteria and airborne and surface fungal spores were reported in schoolrooms. Asthma and 'sick building syndrome' symptoms are commonly reported. The few studies investigating causal relationships between health symptoms and exposures to specific pollutants suggest that such symptoms in schools are related to exposures to volatile organic compounds (VOCs), molds and microbial VOCs, and allergens.  相似文献   

20.
Zhang X  Zhao Z  Nordquist T  Norback D 《Indoor air》2011,21(6):462-471
There are few incidence studies on sick building syndrome (SBS). We studied two-year change of SBS in Chinese pupils in relation to parental asthma/allergy (heredity), own atopy, classroom temperature, relative humidity (RH), absolute humidity (AH), crowdedness, CO?, NO?, and SO?. A total of 1993 participated at baseline, and 1143 stayed in the same classrooms after two years. The prevalence of mucosal and general symptoms was 33% and 28% at baseline and increased during follow-up (P < 0.001). Twenty-seven percent reported at least one symptom improved when away from school. Heredity and own atopy were predictors of SBS at baseline and incidence of SBS. At baseline, SO? was associated with general symptoms (OR=1.10 per 100 μg/m3), mucosal symptoms (OR=1.12 per 100 μg/m3), and skin symptoms (OR=1.16 per 100 μg/m3). NO? was associated with mucosal symptoms (OR=1.13 per 10 μg/m3), and symptoms improved when away from school (OR=1.13 per 10 μg/m3). Temperature, RH, AH, and CO? were negatively associated with prevalence of SBS. Incidence or remission of SBS was not related to any exposure, except a negative association between SO? and new skin symptoms. In conclusion, heredity and atopy are related to incidence and prevalence of SBS, but the role of the measured exposures for SBS is more unclear. PRACTICAL IMPLICATIONS: We found high levels of CO? indicating inadequate ventilation and high levels of SO? and NO?, both indoors and outdoors. All schools had natural ventilation, only. Relying on window opening as a tool for ventilation in China is difficult because increased ventilation will decrease the level of CO? but increase the level of NO? and SO? indoors. Prevalence studies of sick building syndrome (SBS) might not be conclusive for causal relationships, and more longitudinal studies on SBS are needed both in China and other parts of the world. The concept of mechanical ventilation and air filtration should be introduced in the schools, and when planning new schools, locations close to heavily trafficked roads should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号