首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The ribonucleoprotein ribonuclease P (RNase P) cleaves all tRNA precursors endonucleolitically to produce the mature 5'-end. Dictyostelium discoideum RNase P displays an absolute requirement for Mg2+. Only the alkaline earth cations Ca2+, Sr2+, and Ba2+, under appropriate conditions can substitute to some extent for Mg2+. The transition metals Mn2+, Co2+, Ni2+, and Cd2+ are efficient inhibitors of the enzyme activity. Ca2+, Sr2+ and Ba2+, in the presence of Mg2+, exhibit a bimodal action at the kinetic phase of the reaction. Kinetic analysis of the activation phase revealed that Ca2+, Sr2+, or Ba2+ attached on a specific site of RNase P act as nonessential-noncompetitive activators. Further additions of Ca2+, Sr2+, or Ba2+ cause noncompetitive inhibition on the RNase P reaction, indicating that RNase P possesses a second binding site responsible for the inhibitory effect of Ca2+, Sr2+, and Ba2+. Both activator and inhibitory sites can be occupied by Ca2+, Sr2+, or Ba2+ at the same time.  相似文献   

2.
Purkinje cell toxicity is one of the characteristic features of the Gordon phenomenon, a syndrome manifested by ataxia, muscular rigidity, paralysis, and tremor that may lead to death (Gordon, 1933). Two members of the RNase superfamily found in humans, EDN (eosinophil-derived neurotoxin) and ECP (eosinophil cationic protein), cause the Gordon phenomenon when injected intraventricularly into guinea pigs or rabbits. We have found that another member of the RNase superfamily, an antitumor protein called onconase, isolated from Rana pipiens oocytes and early embryos, will also cause the Gordon phenomenon when injected into the cerebrospinal fluid of guinea pigs at a dose similar to that of EDN (LD50, 3-4 micrograms). Neurologic abnormalities of onconase-treated animals were indistinguishable from those of EDN-treated animals, and histology showed dramatic Purkinje cell loss in the brains of onconase-treated animals. The neurotoxic activity of onconase correlates with ribonuclease activity. Onconase modified by iodoacetic acid to eliminate 70% and 98% of the ribonuclease activity of the native enzyme displays a similar decrease in ability to cause the Gordon phenomenon. In contrast, the homologous bovine pancreatic RNase A injected intraventricularly at a dose 5000 times greater than the LD50 dose of EDN or onconase is not toxic and does not cause the Gordon phenomenon. A comparison of the RNase activities of EDN, onconase, and bovine pancreatic RNase A using three pancreatic RNA substrates demonstrates that onconase is orders of magnitude less active enzymatically than EDN and RNase A. Thus, another member of the RNase superfamily in addition to EDN and ECP can cause the Gordon phenomenon.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The interferon-regulated 2-5A/RNase L pathway plays a major role in the antiviral and antiproliferative activities of these cytokines. Several viruses, however, have evolved strategies to escape the antiviral activity of the 2-5A/RNase L pathway. In this context, we have cloned a cDNA coding for the RNase L inhibitor (RLI), a protein that specifically inhibits RNase L and whose regulated expression in picornavirus-infected cells down regulates the activity of the 2-5A/RNase L pathway. We show here that RLI increases during the course of human immunodeficiency virus type 1 (HIV-1) infection, which may be related to the downregulation of RNase L activity that has been described to occur in HIV-infected cells. In order to establish a possible causal relationship between these observations, we have stably transfected H9 cells with RLI sense or antisense cDNA-expressing vectors. The overexpression of RLI causes a decrease in RNase L activity and a twofold enhancement of HIV production. This increase in HIV replication correlates with an increase in HIV RNA and proteins. In contrast, reduction of RLI levels in RLI antisense cDNA-expressing clones reverses the inhibition of RNase L activity associated with HIV multiplication and leads to a threefold decrease in the viral load. This anti-HIV activity correlated with a decrease in HIV RNA and proteins. These findings demonstrate that the level of RLI, via its modulation of RNase L activity, can severely impair HIV replication and suggest the involvement of RLI in the inhibition of the 2-5A/RNase L system observed during HIV infection.  相似文献   

4.
The 2-5A system is an established endogenous antiviral pathway. Interferon treatment of cells leads to an increase in basal, but latent, levels of 2-5A-dependent RNase (RNase L) and the family of 2'-5' oligoadenylate synthetases (OAS). Double-stranded RNA, thought to be derived from viral replication intermediates, activates OAS. Activated OAS converts ATP into unusual short 2'-5' linked oligoadenylates called 2-5A [ppp5'(A2'p5')2A]. The 2-5A binds to and activates RNase L which cleaves single stranded RNA with moderate specificity for sites 3' of UpUp and UpAp sequences, and thus leads to degradation of cellular rRNA. During apoptosis, generalized cellular RNA degradation, distinct from the differential expression of mRNA species that may regulate specific gene expression during apoptosis, has been observed. The mechanism of RNA breakdown during apoptosis has been commonly considered a non-specific event that reflects the generalized shut down of translation and homeostatic regulation during cell death. Due to the similar RNA degradation that occurs during both apoptosis and viral infection we investigated the potential role of RNase L in apoptosis. To investigate whether RNase L activity could lead to apoptosis, NIH3T3 cells were transfected with a lac-inducible vector containing the human RNase L gene. Treatment of these cells with isopropylthiogalactoside (IPTG) caused loss of cell viability that was confirmed as an apoptotic cell death by morphological and biochemical criteria. Similarly, specific allosteric activation of endogenous RNase L by introduction of 2-5A directly into L929 cells also induced apoptosis. In L929 cells poly(I).poly(C) treatment in combination with interferon caused an increase in apoptosis whereas neither interferon or double stranded RNA alone altered cell viability. Therefore, increased expression or activation of RNase L causes apoptosis. Inhibition of RNase L, specifically with a dominant negative mutant, suppressed poly(I)Ypoly(C)-induced apoptosis in interferon-primed fibroblasts. Poliovirus, a picornovirus with a single-stranded RNA genome, causes apoptosis of HeLa cells. Expression of the dominant negative inhibitor of RNase L in HeLa prevented virus-induced apoptosis and maintained cell viability. Thus, reduction or inhibition of RNase L activity prevents apoptosis. Both apoptosis and the 2-5A system can provide defense against viral infection in multicellular organisms by preventing production and therefore spread of progeny virus. RNase L appears to function in both mechanisms, therefore, initiation of apoptosis may be one mechanism for the antiviral activity of the 2-5A system.  相似文献   

5.
6.
7.
Ribonuclease A variants with potent cytotoxic activity   总被引:1,自引:0,他引:1  
Select members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol, where they degrade cellular RNA and cause cell death. Ribonuclease inhibitor (RI), a cytosolic protein, binds to members of the RNase A superfamily with inhibition constants that span 10 orders of magnitude. Here, we show that the affinity of a ribonuclease for RI plays an integral role in defining the potency of a cytotoxic ribonuclease. RNase A is not cytotoxic and binds RI with high affinity. Onconase, a cytotoxic RNase A homolog, binds RI with low affinity. To disrupt the RI-RNase A interaction, three RNase A residues (Asp-38, Gly-88, and Ala-109) that form multiple contacts with RI were replaced with arginine. Replacing Asp-38 and Ala-109 with an arginine residue has no effect on the RI-RNase interaction. In addition, these variants are not cytotoxic. In contrast, replacing Gly-88 with an arginine residue yields a ribonuclease (G88R RNase A) that retains catalytic activity in the presence of RI and is cytotoxic to a transformed cell line. Replacing Gly-88 with aspartate also yields a ribonuclease (G88D RNase A) with a decreased affinity for RI and cytotoxic activity. The cytotoxic potency of onconase, G88R RNase A, and G88D RNase A correlate with RI evasion. We conclude that ribonucleases that retain catalytic activity in the presence of RI are cytotoxins. This finding portends the development of a class of chemotherapeutic agents based on pancreatic ribonucleases.  相似文献   

8.
Alcoholic myopathy occurs in up to two thirds of alcohol misusers and is characterized by selective atrophy of type II (anaerobic, fast-twitch) fibers; type I (aerobic, slow twitch) fibers are relatively unaffected. Both clinical and animal studies have indicated that skeletal muscle RNA content is reduced in response to ethanol exposure, and contributes to impaired protein synthesis. We hypothesized that the reduction in muscle RNA may be due to raised ribonuclease (RNase) activities that enhance RNA catabolism. To test this hypothesis, we measured the total tissue and plasma RNase activities as well as the activities of general (RNase A) and specific or "restriction" RNases (T1L, T2L) in ethanol-treated rats. Chronically treated rats were fed a nutritionally complete liquid diet with 35% of calories as ethanol. Weight-matched controls were pair-fed with isocaloric glucose. Rats were killed at time-points up to 6 weeks. For comparative purposes, the effect of acute (24 hr) starvation was also analyzed in a second group of rats relative to a group of control rats allowed free access to food and water over 24 hr. Results showed that the type II fiber-predominant plantaris muscle exhibited a significant increase in total RNase, RNase A and RNase T1L activities (increases ranged from +59% to +196%; P-values between 0.025 and 0.01) concomitant with large falls in RNA and protein content. In contrast, none of the RNase activities measured in the type I fiber-predominant soleus muscles were significantly affected; compositional changes were also smaller in the soleus. This effect was independent of reduced nutrition. In conclusion, the raised total RNase, RNase A and RNase T1L activities may contribute to the type II fiber-specific reduction in total RNA in chronically ethanol-treated rats. In turn, this may contribute to the alterations in cellular protein metabolism seen under these treatments.  相似文献   

9.
10.
The biogenesis of trimeric G proteins was investigated by measurement of the expression of alpha-subunits in the megakaryoblastic cell lines MEG-01, DAMI, and CHRF-288-11, representing stages of increasing maturation, and compared with platelets. Megakaryoblasts and platelets contained approximately equal amounts of Gi alpha-1/2, Gi alpha-3, Gq alpha, and G12 alpha protein. Maturation was accompanied by (1) downregulation of mRNA for Gs alpha and disappearance of iloprost-induced Ca2+ mobilization, (2) upregulation of the long form of Gs alpha protein (Gs alpha-L) and an increase in iloprost-induced cAMP formation, and (3) upregulation of G16 alpha mRNA and G16 alpha protein and appearance of thromboxane A2-induced signaling (Ca2+ mobilization and stimulation of prostaglandin I2-induced cAMP formation). Gz alpha protein was absent in the megakaryoblasts despite weak expression of Gz alpha mRNA in DAMI and relatively high levels of Gz alpha mRNA and Gz alpha protein in platelets. These findings reveal major changes in G protein-mediated signal transduction during megakaryocytopoiesis and indicate that G16 alpha couples the thromboxane receptor to phospholipase C beta.  相似文献   

11.
In eukaryotes, ribonuclease P (RNase P) requires both RNA and protein components for catalytic activity. The eukaryotic RNase P RNA, unlike its bacterial counterparts, does not possess intrinsic catalytic activity in the absence of holoenzyme protein components. We have used a sensitive photoreactive cross-linking assay to explore the substrate-binding environment for different eukaryotic RNase P holoenzymes. Protein components from the Tetrahymena thermophila and human RNase P holoenzymes form specific products in photoreactions containing [4-thio]-uridine-labeled pre-tRNAGln. The HeLa RNase P RNA in neither the presence nor the absence of holoenzyme protein components formed cross-link products to the pre-tRNAGln probe. Parallel photo-cross-linking experiments with the Escherichia coli RNase P holoenzyme revealed that only the bacterial RNase P RNA forms specific substrate photoadducts. A protein-rich active site for the eukaryotic RNase P represents one unique feature that distinguishes holoenzyme organization between bacteria and eukaryotes.  相似文献   

12.
The role of calcineurin in modulation of calcium channel activity was examined in GH3 pituitary cells by using its selective inhibitor cyclosporin A. While cyclosporin A had little effect on basal activity, it induced a biphasic increase in K+-induced 45Ca2+ influx. Cyclosporin A rapidly increased K+-induced 45Ca2+ influx to approximately 140% of control in 1 h and the increment maintained at this magnitude for 1-8 h. Thereafter, K+-induced 45Ca2+ influx gradually increased further to approximately 220% after 24 h exposure to this compound. In the presence of anisomycin, however, the increase occurred at the latter phase was abolished. In addition, the increased calcium influx in cyclosporin A-pretreated cells had a similar sensitivity to KCl and verapamil as in untreated cells. Measurement of intracellular Ca2+ level by Fura-2 analysis indicated that [Ca2+]i increase induced by high K+ or vasoactive intestinal peptide was similarly augmented in cyclosporin A-pretreated cells. Thus the results of this study suggest that calcineurin may play a tonic control on L-type Ca2+ channel, and inhibition of this enzyme may induce a subsequently protein synthesis-dependent higher channel activity.  相似文献   

13.
A major allergen/antigen, Asp fl, secreted by Aspergillus fumigatus exhibits cytotoxicity towards eukaryotic cell lines. Asp fl inhibited protein synthesis in RAW cells with an IC50 of 4.5 nM and also degraded ribosomal RNA of RAW cells at a similar concentration. Ribosomal inactivation by Asp fl may be the probable mechanism for protein synthesis inhibition. Specific ribonuclease activity of Asp fl was observed to be 100,000 U/mg. Presence of strong RNase activity in Asp fl was further confirmed by agar gels containing yeast RNA. Electrophoretic run on agarose gels showed that Asp fl degrades all species of naked RNA. Modification of histidine residues of Asp fl with diethyl pyrocarbonate and alkylation of cysteines with iodoacetamide resulted in loss of ribonuclease activity and cytotoxicity of Asp fl. The current study establishes the ribonuclease activity of a purified major allergen of A. fumigatus that inhibits protein synthesis and kills the eukaryotic cells.  相似文献   

14.
Nuclei from seminal vesicle epithelium of adult guinea pigs were isolated in hypertonic sucrose solution. The incorporation of [3H]UTP by the isolated nuclei into acid-precipitable products was studied. Incorporation required ATP, GTP, CTP, UTP, and Mg+2. It was inhibited by addition of actinomycin D, deoxyribonuclease, or pyrophosphate to the reaction mixture. Thus, incorporation of [3H]UTP by isolated nuclei had the same characteristics that have been demonstrated for the reactions catalyzed by nuclear RNA polymerases. Using alpha-amanitin as a metabolic tool, we established concentrations of (NH4)2SO4. Mg+2, and nucleotides that give maximum assayable activities of nuclear RNA polymerases I and II. When the activities of polymerases I and II were measured in isolated seminal vesicle nuclei of guinea pigs that had been castrated 4 days earlier, a marked decrease in activities was found relative to control values (nuclei from intact animals). No further decrease was found 8 days after castration. Diminished accessibility to the nuclear DNA template and a decrease in the concentration of RNA polymerase molecules seemed to be responsible for the observed effects of castration on activities of RNA polymerases. An increase in ribonuclease activity did not seem to be responsible for the effects of castration. Activities of the enzymes did not change 2, 3, or 4 hours after intraperitoneal injection (2 mg/kg body weight) of each of five different androgens. Similarly, a single intraperitoneal injection of testosterone did not restore enzyme activity of polymerade I or II at any time during the first 24-hour period after hormone administration.  相似文献   

15.
16.
Clotrimazole (CLT), an antimycotic drug, has been shown to inhibit proliferation of normal and cancer cell lines and its systemic use as a new tool in the treatment of proliferative disorders is presently under scrutiny (Benzaquen, L. R., Brugnara, C., Byers, H. R., Gattoni-Celli, S., and Halperin, J. A. (1995) Nature Med. 1, 534-540). The action of CLT is thought to involve depletion of intracellular Ca2+ stores but the underlying mechanism has not been defined. The present study utilized membrane vesicles of rabbit cardiac sarcoplasmic reticulum (SR) to determine the mechanism by which CLT depletes intracellular Ca2+ stores. The results revealed a strong, concentration-dependent inhibitory action of CLT on the ATP-energized Ca2+ uptake activity of SR (50% inhibition with approximately 35 microM CLT). The inhibition was of rapid onset (manifested in <15 s), and was accompanied by a 7-fold decrease in the apparent affinity of the SR Ca2+-ATPase for Ca2+ and a minor decrement in the enzyme's apparent affinity toward ATP. Exposure of SR to CLT in the absence or presence of Ca2+ resulted in irreversible inhibition of Ca2+ uptake demonstrating that the Ca2+-bound and Ca2+-free conformations of the Ca2+-ATPase are CLT-sensitive. Introduction of CLT to the reaction medium subsequent to induction of enzyme turnover with Ca2+ and ATP resulted in instantaneous cessation of Ca2+ transport indicating that an intermediate enzyme species generated during turnover undergoes rapid inactivation by CLT. The inhibition of Ca2+ uptake by CLT was accompanied by inhibition of Ca2+-stimulated ATP hydrolysis and Ca2+-induced phosphoenzyme intermediate formation from ATP in the ATPase catalytic cycle. Phosphorylation of the Ca2+-deprived enzyme with Pi in the reverse direction of catalytic cycle and Ca2+ release from Ca2+-preloaded SR vesicles were unaffected by CLT. It is concluded that CLT depletes intracellular Ca2+ stores by inhibiting Ca2+ sequestration by the Ca2+-ATPase. The mechanism of ATPase inhibition involves a drug-induced alteration in the Ca2+-binding site(s) resulting in paralysis of the enzyme's catalytic and ion transport cycle. CLT (50 microM) caused marked depression of contractile function in isolated perfused, electrically paced rabbit heart preparations. The contractile function recovered gradually following withdrawal of CLT from the perfusate indicating the existence of mechanisms in the intact cell to inactivate, metabolize, or clear CLT from its target site.  相似文献   

17.
18.
Previously, we have observed a strong restriction of the Moloney murine leukemia virus (MoMLV) replicative cycle in a cell line displaying resistance to topoisomerase II (topo II)-interactive drugs. Resistance towards these antitumoral inhibitors was associated with decreased expression and activity of topo II, suggesting that such a decrease may be responsible for MoMLV restriction. To more specifically assess the role of topo II during the retroviral cycle, we have used the antisense strategy to obtain a selective decrease of cellular topo II expression. The RNA antisense was isolated from a retroviral library expressing random fragments of human topo II (alpha form). This system allowed us to investigate the HIV-1 replicative cycle in two related human CEM cell lines expressing different levels of topo II. Expression of the enzyme is decreased four- to sixfold following formation of a sense-antisense RNA hybrid. Repression of the topo II enzyme results in an impairment of the HIV-1 replicative cycle. Using the polymerase chain reaction, we showed that the number of integration events was decreased in cells repressing the enzyme, although viral DNA synthesis and circularization were equivalent to those in the parent cells.  相似文献   

19.
Ribonuclease H activities present in fully grown Xenopus oocytes were investigated by using either liquid assays or renaturation gel assays. Whereas the test in solution detected an apparently unique class I ribonuclease H activity, the activity gels did not detect this enzyme but another one with the molecular weight expected for a class II ribonuclease H. The ribonuclease HI was found to be primarily concentrated in the germinal vesicle, but around 5% of this activity was detectged in the cytoplasm and may correspond to the activity involved in antisense oligonucleotide-mediated destruction of messenger RNAs. The concentration of this class I ribonuclease H in oocytes is similar to that in somatic cells. The class II ribonuclease H remained undetectable by the test in solution because its activity was cryptic. On activity gel, a polypeptide with the apparent molecular mass of 32 kDa, expected for a ribonuclease HII, was found to be concentrated in mitochondria although no RNase H activity could be detected by using the liquid assay. Based on sedimentation studies, we hypothesize that the apparent absence of RNase H activity in solution could be the result of the association of this 32-kDa polypeptide with other polypeptides, or possibly nucleic acids, to form a multimer of, until now, unknown function.  相似文献   

20.
The enzyme glutathione reductase (GR) (GSSG+NADPH+H+-->2 GSH+NADP+) plays a key role in the cellular defense against oxidative stress. High levels of GR activity are often associated with tumor growth and/or resistance mechanisms against drug and radiation therapy. In order to investigate the molecular basis of elevated glutathione reductase activities we studied the enzyme at the DNA, mRNA and protein levels in murine experimental tumor cell lines and in human lung tumors. A modified ultracentrifugation procedure was developed which allowed the simultaneous isolation of DNA and total cellular RNA. Out of 11 human bronchial carcinomas obtained from patients without prior chemotherapy, five tumors showed a GR activity which was 2.4 to 3.8 times higher than in the respective control tissues. In each case the elevated enzyme activity was accompanied by an elevated GRmRNA levels. For none of the tumors, GR gene rearrangement or amplification was observed by Southern blot analyses. The mouse tumor cell lines ASB XIV, Lewis lung carcinoma and EAT cells, also showed high levels of GRmRNA whereas this mRNA was hardly detectable in normal mouse lung tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号