首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
综述了锂离子电池正极材料LiMn2O4的制备,结构及其电化学性能,LiMn2O4具有尖晶石型结构,为锂离子的脱嵌与嵌入提供了三维隧道空间,它具有3V和4V两个电压平台,成为锂离子电池最有吸引力的材料。  相似文献   

2.
综述了锂离子电池正极材料LiMn2O4的制备、结构及其电化学性能.LiMn2O4具有尖晶石型结构,为锂离子的脱嵌与嵌入提供了三维隧道空间,它具有3 V和4 V两个电压平台,成为锂离子电池最有吸引力的材料.  相似文献   

3.
锂离子电池正极材料LiMn2O4的高温性能研究进展   总被引:1,自引:0,他引:1  
综述了尖晶石结构LiMn2O4作为锂离子电池正极材料的高温热分解和在高温充/放电过程中容量衰减的最新研究进展;概述了解决LiMn2O4作为锂离子电池正极材料的高温容量损失问题而进行的各种改性的研究情况;提出了改进LiMn2O4正极材料高温性能的建议和方法。  相似文献   

4.
5.
锂离子电池正极材料的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
李恒  张丽鹏  于先进 《硅酸盐通报》2012,31(6):1486-1490
锂离子电池具有工作电压高、能量密度大、工作温度范围宽、安全性能好等众多优点,因而成为近年来倍受关注的电动汽车动力电源之一.随着正极材料种类的更新,制备过程中多种改性方法的采用,如掺杂与包覆导电剂来提高正极导电率,减小粒径尺寸加快锂离子传导速率等方法,使锂离子电池电化学性能得到提高.本文综述了几种常见锂离子电池正极材料的研究现状与进展,重点对LiCoO2、LiNiO2、LiMn2O4、LiFePO4几种正极材料的晶体结构、性能、合成方法、以及掺杂与包裹改性进行了介绍,并对其发展趋势进行了展望.  相似文献   

6.
锂离子电池因其能量密度大、比容量高、使用寿命长等优点,已成为广泛应用的储电设备。随着新能源汽车市场的强劲发展,要求作为动力电池的锂离子电池性能进一步提升,而正极材料是锂离子电池最为重要的组成部分,开发研究性能更好、比容量更高的正极材料是进一步提高锂离子电池能量密度的关键,目前,研究的锂离子电池正极材料主要有锂钴氧化物、锂镍氧化物、锂锰氧化物及锂铁化合物等。本文对主要的锂离子正极材料研究应用现状进行了探讨分析,对其发展趋势进行了预测,可为锂离子电池的深入研究提供一定的参考借鉴。  相似文献   

7.
锂离子电池电极材料LiMn2O4的研究进展   总被引:1,自引:0,他引:1  
简要介绍了锂离子电池电极材料的发展概况和目前制备LiMn2O4的几种方法。  相似文献   

8.
锂离子电池正极材料LiFePO_4的研究进展   总被引:1,自引:0,他引:1  
介绍了锂离子电池正极材料LiFePO4的结构特征和电化学过程。评述了近年来制备LiFePO4的各种方法,包括固相法,液相法(水热法、液相共沉淀法等),微波法等。橄榄石型磷酸铁锂(LiFePO4)理论比容量为170 mA.h/g,电压为3.5V(vs.Li/Li+),环境友好,成本低廉,热稳定性较好,可望成为锂离子蓄电池的新型正极材料。  相似文献   

9.
锂离子电池正极材料LiFePO4的研究进展   总被引:2,自引:0,他引:2  
从LiFePO4的结构出发,分析了该材料所特有的优越性能以及存在的缺陷,阐述了物理掺杂和体相掺杂两类改性方法的特点和取得的成效。在此基础上,介绍了高温固相法、共沉淀法等方法合成LiFePO4的最新研究进展,探讨了各种制备方法的优缺点,并简要评述了LiFePO4未来发展的前景以及为使该材料走向实用化应注重的研究方向。  相似文献   

10.
综述了合成Li2FeSiO4的方法,着重介绍了固相、溶胶-凝胶、水热、微波等几种主要的合成方法,并针对Li2FeSiO4电导率低的缺点,详细阐述了Li2FeSiO4电化学性能的改善方法,包括材料纳米化、孔状材料的制备、碳包覆和离子掺杂等。探讨了当前存在的问题及未来的研究方向。  相似文献   

11.
本文综述了锂离子电池正极材料尖晶石型LiMn2O4的国内外研究现状,在分析尖晶石型LiMn2O4结构和其作为正极材料相关理论的基础上,阐述了合成技术,包括制备方法、合成温度、材料粒径等对LiMn2O4材料性能的影响;并就掺杂改性分析了选择合适的掺杂离子、掺杂量、合成工艺等对材料性能的影响。  相似文献   

12.
通过L25(55)拉丁正交实验,利用极差分析法对制备LiMn2O4的反应条件进行优化,找出了合成LiMn2O4的合适工艺. 固相分段法制备LiMn2O4的过程中,氧化物的合成反应温度、氧气流量、LiOH的分解反应温度、锂锰摩尔比及恒温时间依次为主要影响因素. LiMn2O4实验电池的电化学测试表明,3 V左右放电平台可达8 h,初始放电比容量为140 mAh/g左右. 从结构化学角度分析了尖晶石型锰酸锂材料的充放电过程和产生Jahn-Teller效应的原因.  相似文献   

13.
尖晶石LiMn2O4正极材料的研究进展   总被引:8,自引:2,他引:8  
周燕芳  钟辉 《化工进展》2003,22(2):140-145
综述了近年来锂离子电池正极材料尖晶石LiMn2O4的研究进展。主要阐述了LiMn2O4的制备方法、晶体结构、电性能以及改性方法等方面的发展状况。  相似文献   

14.
用高温固相法制备了锂离子电池正极材料LiAlyCo1-yO2。掺杂前后该材料的物理性能无太大变化;利用XRD与能谱仪观察到了铝元素的特征峰。通过对电化学性能的研究,发现其电化学比容量明显高于原始的钴酸锂,但其循环性能下降;当铝的掺杂量增加时,复合物的放电时间明显减少;实验得出铝元素的摩尔掺杂量为0.10时各方面性能最佳。  相似文献   

15.
采用"熔融浸渍法"合成了Mg和F共掺杂的不同温度下的锂离子电池正极材料Li Mn2-xMgxO3.97F0.03(x=0.05,0.1);煅烧温度为700,750和800°C。通过XRD对样品进行测试,样品为单一尖晶石结构的物相;并用SEM测试,对样品进行了形貌研究。用所制备的材料作为正极材料组装了模拟锂离子电池;在室温下进行恒电流充-放电性能测试,测试条件为3.3~4.3 V和0.2mA/cm2电流密度。随着材料制备温度的升高,电池的初始放电容量有逐渐增加的趋势,但充放电循环的容量损失也逐渐增加;氟掺杂量一定,镁掺杂量较多时,对应温度下煅烧的样品的结晶程度较好,样品的电化学性能也较好。在800下°C样品Li Mn1.9Mg0.1O3.97F0.03初始容量高达108 mAh/g,60次充放电循环后,其容量保持率高达81%,具有优良的循环稳定性能。  相似文献   

16.
采用机械活化-高温固相法制备了锂离子电池正极材料LiCo1/3Mn1/3Ni1/3O2研究球磨方式与n(Li)/n(M)对合成产物结构与性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。研究结果表明,优化试验条件下制备得到的材料具有良好的循环性能,在电压范围2.7~4.2V内,充放电的电流值为20mA/g时,初始放电比容量为160mA·h/g,30次循环后容量保持率为96.98%。  相似文献   

17.
以纳米TiO2和LiNO3为原料,尿素为燃料,燃烧法合成了锂离子电池负极材料Li4Ti5O12. 利用XRD、SEM和恒电流充放电、循环伏安和交流阻抗对其进行表征. 结果表明,预设炉温850℃,尿素与锂摩尔比1,焙烧8 h,制备得到平均粒径小于500 nm、粒度分布均匀的纯相尖晶石型结构Li4Ti5O12,并具有良好的电化学性能,具有1.5 V充放电平台,在0.1 C倍率下(1 C=170 mA·h/g),其首次充放电容量达到168 mA·h/g,经过100次循环后放电比容量仍有162 mA·h/g,容量保持率96.4%.  相似文献   

18.
王可珍  李芳  勾路路 《当代化工》2014,(12):2526-2528
结构式为Li[Ni,Co,Mn]O2的层状镍钴锰三元材料由于具有容量高、结构稳定、安全性好、成本低且对环境没有污染等优点而受到动力电池市场的广泛关注。但是它也存在高温大倍率放电性能及高充电截止电压条件下的循环稳定性能差等缺点。介绍了三种三元材料的合成改性工艺和两种基体改性方法,分别包括离子交换法、超声辅助合成法、熔盐法和表面包覆、掺杂等。并对其未来发展进行了展望。  相似文献   

19.
锂离子动力电池碳负极材料研究进展   总被引:1,自引:0,他引:1  
常鸿雁 《上海化工》2010,35(3):5-10
动力电池的性能是制约电动车大规模应用的重要因素,而负极材料在动力电池的生产和应用中起着关键的作用。动力型负极材料要围绕安全性、长寿命、一致性、低成本和较高的倍率充放电能力等方面进行深入系统的研究。综述了锂离子动力电池碳负极材料的研究进展,比较了中间相炭微球、石墨类与硬炭类材料的优缺点,并对提高材料高倍率充放电性能的改性方法进行了介绍。  相似文献   

20.
本文用溶胶凝胶法制备了LiNi0.5Mn1.5O4正极材料,然后用ZnF2对其进行表面包覆。XRD测试表明,包覆处理没有影响材料的晶体结构,EDS、SEM和TEM测试表明,2wt%ZnF2在LiNi0.5Mn1.5O4表面形成了约7 nm厚的均匀包覆层。对未包覆、1wt%、2wt%、3wt%包覆后的材料进行电化学性能测试对比,发现包覆后都能减弱电解液与基体间的相互作用,较大地稳定电极表面,提高了材料的电化学性能。其中,2wt%ZnF2包覆样品表现出最佳的电化学性能,0.2 C倍率下循环200圈后,其放电比容量维持在109 mAh/g,容量保持率为79.7%;在10 C时,放电比容量依然高达102.1 mAh/g;5 C高倍率下循环500圈后,放电比容量维持在94.2 mAh/g,容量保持率为85.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号