首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, the fuel starvation phenomena in a single proton exchange membrane fuel cell (PEMFC) are investigated experimentally. The response characteristics of a single cell under the different degrees of fuel starvation are explored. The key parameters (cell voltage, current distribution, cathode and anode potentials, and local interfacial potentials between anode and membrane, etc.) are measured in situ with a specially constructed segmented fuel cell. Experimental results show that during the cell reversal process due to the fuel starvation, the current distribution is extremely uneven, the local high interfacial potential is suffered near the anode outlet, hydrogen and water are oxidized simultaneously in the different regions at the anode, and the carbon corrosion is proved to occur at the anode by analyzing the anode exhaust gas. When the fuel starvation becomes severer, the water electrolysis current gets larger, the local interfacial potential turns higher, and the carbon corrosion near the anode outlet gets more significant. The local interfacial potential near the anode outlet increases from ca. 1.8 to 2.6 V when the hydrogen stoichiometry decreases from 0.91 to 0.55. The producing rate of the carbon dioxide also increases from 18 to 20 ml min−1.  相似文献   

2.
In a proton exchange membrane fuel cell stack, a single cell is potentially subjected to voltage reversal under fuel starvation conditions, which is extremely harmful to its durability. In this work, we develop a two-dimensional computational model to investigate the current and potential distributions in a single cell under these voltage reversal conditions. It is found that most of hydrogen under these conditions is oxidized in a narrow region close to the fuel-inlet, and the anode area before hydrogen depletion can be characterized into an activation limited region and a mass-transport limited region. Meanwhile, an unexpected hydrogen evolution phenomenon is discovered in the cathode catalyst layer (CCL) adjacent to the fuel inlet, owing to the imbalance between the localized ultrahigh hydrogen oxidation current density in the anode and the lower limiting current density of oxygen reduction reaction in the adjacent CCL. Furthermore, the evolved hydrogen gas is also found to be oxidized nearby due to the steep variation of electrolyte potential in the CCL, indicating the coexistence of hydrogen evolution, hydrogen oxidation and oxygen reduction within the micron-scale thickness of CCL, which significantly adds to the complexity of the coupled phenomena in the voltage-reversal single cell.  相似文献   

3.
Current distribution during the gas starvation and shutdown processes is investigated in a proton exchange membrane fuel cell with an active area of 184 cm2. The cell features a segmented cathode current collector. The response characteristics of the segmented single cell under different degrees of hydrogen and air starvation are explored. The current responses of the segment cells at different positions under a dummy load in the shutdown process are reported for various operating conditions, such as different dummy loads, cell temperatures, and gas humidities under no back pressure. The results show that applying a dummy load during the cell shutdown process can quickly reduce the cell potential and thereby avoid the performance degradation caused by high potentials. The currents of all the segment cells decrease with time, but the rate of decrease varies with the segment cell positions. The rate for the segment cells near the gas outlet is much higher than that of the segment cells near the gas inlet. The current of the segment cells decreases much more quickly at a lower gas humidity and high temperature. This study provides insights in the development of mitigation strategies for the degradation caused by starvation and shutdown process.  相似文献   

4.
《Journal of power sources》2006,157(1):166-176
Starvation is a vivid word to describe the operation condition of a fuel cell in sub-stoichiometric reactants feeding. In starvation, a fuel cell could not present its best performance; moreover, there might also be safety issue because of cell reversal. In this paper, current density distributions of proton exchange membrane fuel cell (PEMFC) in hydrogen and air starvation were studied with a segmented single fuel cell. Experimental results show that the polarization curves of the overall cell are different for anode and cathode starvation. And the current density distribution results show that for anode starvation, current density of the starved region drops sharply to zero, while for cathode starvation, there is no zero current density region observed. Numerical simulations give similar results.  相似文献   

5.
Durability is an important issue in proton exchange membrane fuel cells (PEMFCs) currently. Reactant starvation could be one of the reasons for PEMFC degradation. In this research, the oxidant starvation phenomena in a single cell are investigated. The local interfacial potential, current and temperature distribution are detected in situ with a specially constructed segmented cell. Experimental results show that during the cell reversal process due to oxidant starvation, the local interfacial potential in the oxidant inlet keeps positive while that of the middle and outlet regions become negative, which illustrates that oxygen and proton reduction reactions could occur simultaneously in different regions at the cathode. The current distribution would be more uneven with decreasing air stoichiometry before cell reversal. When cell reversal occurs, the current will redistribute and the current distribution tends more uniform. At the critical point of cell reversal, the most significant inhomogeneity in the current distribution can be observed. The temperature distribution in the cell is also monitored on-line. The local hot spot exists in the cell when cell reversal occurs. The study of the critical reversal air stoichiometry under different loads shows that the critical reversal air stoichiometry increases with the rising loads.  相似文献   

6.
Degradation caused by fuel starvation may be an important reason for limited fuel cell lifetimes. In this work, we present an analytical characterization of the high temperature polymer exchange membrane fuel cell (HT-PEM FC) behavior under cycled anode starvation and subsequent regeneration conditions to investigate the impact of degradation due to H2 starvation. Two membrane electrode assemblies (MEAs) with an active area of 21 cm2 were operated of up to 550 min, which included up to 14 starvation/regeneration cycles. Overall cell voltage as well as current density distribution (S++ unit) were measured simultaneously each minute during FC operation. The cyclicity of experiments was used to check the long term durability of the HT-PEM FC. After FC operation, micro-computed tomography (μ-CT) was applied to evaluate the influence of starvation on anode and cathode catalyst layer thicknesses.During starvation, cell voltage and current density distribution over the active area of the MEA significantly differed from nominal conditions. A significant drop in cell voltage from 0.6 to 0.1 V occurred after approx. 20 min for the first starvation step, and after 10 min for all subsequent starvation steps. By contrast, the voltage response is immediately stable at 0.6 V during every regeneration step. During each starvation, the local current density reached up to 0.3 A∙point−1 at the area near the gas inlet (9 cm2) while near the outlet it drops to 0.01 A∙point−1. The deviation from a balanced current density distribution occurred after 10 min for the first starvation step, and after ca. 2 min for the subsequent starvation steps. Hence, compared to the voltage drop, the deviation from a balanced current density distribution always starts earlier. This indicates that the local current density distribution is more sensitive to local changes in the MEA than overal cell voltage drop. This finding may help to prevent undesirable influences of the starvation process.The μ-CT images showed that H2 starvation lead to thickness decrease of ca. 20–30% in both anode and cathode catalyst layers compared to a fresh MEA. Despite of the 14 starvation steps and the thinning of the catalyst layers the MEA presents stable cell voltage during regeneration.  相似文献   

7.
The present work aims to show the nonlinear behavior of a PEM fuel cell under different mass transport conditions. Understanding this behavior helps in online state-of-health monitoring and control of a fuel cell stack. To analyze the health of an operating stack, a total harmonic distortion analysis (THDA) system requires only the sum of voltages or currents of the stack to be monitored. A low-frequency current or voltage signal is impressed on the fuel cell stack, and the resulting voltage or current signal is measured. To determine any change in harmonics, the measured signal is processed with a harmonic analyzer. The operational states of individual cells of the fuel cell stack may be inferred from at least one change in the harmonic content of the impressed signal. The mass transport problem related to the cathode and anode is distinguished using mixed-frequency signals. The present study found experimentally that hydrogen starvation is dominantly observed in the harmonic analysis only below a frequency of 15 Hz, whereas air starvation showed harmonic changes at frequencies below 100 Hz. Total harmonic distortions were observed to rise to 2–2.5% under both the starvation conditions but with different frequency signals.  相似文献   

8.
Hydrogen starvation results in an inhomogeneous distribution of gases within fuel cells and stacks. An inhomogeneous reactant distribution significantly changes the current density distribution over the active cell area and can cause high cathode potentials due to the presence of oxygen in the anode electrode domain. High cathode potentials result in corrosion of the carbon support and thus lead to irreversible cell degradation. A PEMFC single cell assembly was utilised for detailed investigations of these phenomena. The cell was operated with low stoichiometries and in dead-end mode. Product gas analyses were utilised for determining the degradation phenomena.  相似文献   

9.
Hydrogen starvation during a start-up process in proton exchange membrane (PEM) fuel cells could result in drastic local current density variations, reverse cell voltage and irreversible cell damages. In this work, variations of local current densities and temperatures are measured in situ under both potentiostatic and galvanostatic modes. Experimental results show that when the cell starts up under potentiostatic mode with hydrogen starvation, current density undershoots occur in the downstream; while under the galvanostatic mode, local current density in the downstream almost drops to zero, but the current density near the outlet remains almost constant. The phenomenon of near constant current density near the outlet leads to a novel approach to alleviate hydrogen starvations - a hydrogen reservoir is added at the anode outlet. Experimental results show that the exit hydrogen reservoir can significantly reduce the zero current region and alleviate hydrogen starvations. A non-dimensional current-density variation coefficient is proposed to measure the magnitude of local current density changes during starvations. Experimental results show that the exit hydrogen reservoir can significantly reduce the current-density variations coefficient over the entire flow channel, indicating that adding an exit reservoir is an effective approach in mitigating hydrogen starvations.  相似文献   

10.
The operations of fuel cell stacks in fuel cell vehicle are dynamic. During dynamic loading, the oxidant starvation often occurs, due to the gas response rate lagging the loading rate. To study the transient behavior of the fuel cell stack at load changes, the measuring methods of current and temperature distribution are developed. In this paper, the current distribution and temperature distribution as well as their dynamic changes in fuel cell stack have been evaluated in situ. The experimental results show that the local current and temperature rise when load rapidly. The extent of temperature fluctuation during dynamic loading is significantly influenced by air stoichiometries, loading rates, and air relative humidities. When air stoichiometry is very low, the temperature of cathode inlet rises sharply. The quicker the loading rate is, the bigger the extent of temperature fluctuation is. With increasing air relative humidity, the transient temperature of cathode inlet rises, while the transient temperature of cathode outlet decreases. This paper will provide reference for durability researches on fuel cell vehicles (FCVs).  相似文献   

11.
During the anodic dead-end mode operation of fuel cells, the inert gases (nitrogen and water) present in the cathode side gas channel permeate to the anode side and accumulate in the anode gas channel. The inert gas accumulation in the anode decreases the fuel cell performance by impeding the access of hydrogen to the catalyst. The performance of fuel cell under potentiostatic dead-end mode operation is shown to have three distinct regions viz. time lag region, transient current region and a steady state current region. A current distribution measurement setup is used to capture the evolution of the current distribution as a function of time and space. Co- and counter-flow operations of dead-end mode confirm the propagation of inert gas from the dead-end of anode channel to the inlet of anode. Experiments with different oxidants, oxygen and air, under dead-end mode confirm that nitrogen which permeates from cathode to anode causes the performance drop of the fuel cell. For different starting current densities of 0.15 A cm−2, 0.3 A cm−2 and 0.6 A cm−2 the inert gas occupies 35%, 45% and 57%, respectively of anode channel volume at the end of 60 min of dead-end mode operation.  相似文献   

12.
In the previous researches, researchers mainly focus on the single cell which is far away from the practical application. In this paper, shut-down process is studied in a 5-cell stack with segment technology. In the unprotected group, the hydrogen/air boundary is observed, and the output voltage performance degrades greatly after 300 start-stop cycles. A 2-phase auxiliary load strategy is proposed to avoid the hydrogen/air boundary. The lifetime is extended. But a serious local starvation is observed during the shut-down process. And corrosion happened in the inlet region. To avoid the starvation, the second strategy is designed, which combines 2-phase auxiliary and air purge (2-phase load& air purge strategy). With the new strategy, the degradation of the stack after 1500 cycles is acceptable, and the carbon corrosion in the inlet is effectively reduced. It could conclude that the hydrogen/air boundary is the main cause of the degradation of fuel cell during an unprotected shut-down process. And a strategy only with auxiliary load may suffer from the local starvation. The purge process can avoid the vacuum effect in the fuel cell caused by the auxiliary load. Therefore, adding an air purge during the shut-down process is promising in vehicle fuel cell.  相似文献   

13.
Operating the PEM fuel cell in the dead-ended anode mode reduces the overall cost and complexity of the system but causes a voltage loss and carbon corrosion in the cathode catalyst layer due to hydrogen starvation in the anode. Whereas allowing an ultra-low flowrate at the anode outlet offers a very high utilization of hydrogen and achieves a stable voltage transient. Here, a time-dependent pseudo-three-dimensional, two-phase, and non-isothermal model is developed to study the optimum bleeding rate, which maximizes the hydrogen utilization, achieves a stable cell voltage and avoids carbon corrosion, which is commonly observed when the bleed rate is set to zero, i.e. the dead-ended mode. The model is validated against the experimental data by comparing the polarization curves and cell voltage transients during the dead-ended anode operation of small experimental cells with serpentine and straight anode flow channels. Moreover, the effects of operating conditions on cell performance during the anode bleeding operation mode are investigated. Results demonstrate that the hydrogen utilization exceeds 99% in the anode-bleeding mode without hydrogen starvation, and the cell performance improves significantly for higher anode pressure, lower cell temperature, and lower relative humidity at the cathode inlet. Lastly, it is found that serpentine channels in the anode improve the uniformity of the distribution of hydrogen compared to straight and interdigitated channels in the anode-bleeding mode while the cathode flow field consists of serpentine channels.  相似文献   

14.
In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler-Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients.  相似文献   

15.
The aim of this study is to investigate the abnormal behavior of cell voltage in a proton exchange membrane fuel cell stack and a mitigation strategy. The proposed strategy is simple and requires only a three‐way solenoid valve to replace the direct way solenoid valve of the original system. It is applied to a proton exchange membrane fuel cell stack with a dead‐ended anode to verify its validity. The behavior of the cell voltages in the stack is discussed in detail, especially the cell reversal process. The results show that the proposed strategy can significantly reduce the severity of hydrogen starvation. And the maximum power of the stack is increased by 10.67%. It is a sudden increase related to cell reversal mitigation. Uneven hydrogen distribution is the cause of low cell voltage and cell reversal. This strategy increases the cell voltage by increasing the hydrogen content in the anode flow channel downstream. It also significantly reduces the fluctuations in cell voltage and improves the uniformity of the cell voltage. This experimental study contributes to mitigate hydrogen starvation in cells of proton exchange membrane fuel cell stacks in application.  相似文献   

16.
Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.  相似文献   

17.
The poisoning effect of carbon monoxide (CO) on high-temperature proton-exchange membrane fuel cells (PEMFCs) is investigated with respect to CO concentration, operating temperature, fuel feed mode, and anode Pt loading. The loss in cell voltage when CO is added to pure hydrogen anode gas is a function of fuel utilization and anode Pt loading as well as obvious factors such as CO concentration, temperature and current density. The tolerance to CO can be varied significantly using a different experimental design of fuel utilization and anode Pt loading. A difference in cell performance with CO-containing hydrogen is observed when two cells with different flow channel geometries are used, although the two cells show similar cell performance with pure hydrogen. A different combination of fuel utilization, anode Pt loading and flow channel design can cause an order of magnitude difference in CO tolerance under identical experimental conditions of temperature and current density.  相似文献   

18.
To improve the performance and durability of a dead-ended anode (DEA) fuel cell, it is important to understand and characterize the degradation associated with the DEA operation. To this end, the multiple degradation phenomena in DEA operation were investigated via systematic experiments. Three lifetime degradation tests were conducted with different cell temperatures and cathode relative humidities, during which the temporal evolutions of cell voltage and high frequency resistance (HFR) were recorded. When the cathode supply was fully humidified and the cell temperature was mild, the cathode carbon corrosion was the predominant degradation observed from scanning electronic microscopy (SEM) of postmortem samples. The catalyst layer and membrane thickness were measured at multiple locations across the cell active area in order to map the degradation patterns. These observations confirm a strong correlation between the cathode carbon corrosion and the anode fuel starvation occurring near the cell outlet. When the cathode supply RH reduced to 50%, membrane pin-hole failures terminated the degradation test. Postmortem analysis showed membrane cracks and delamination in the inlet region where membrane water content was the lowest.  相似文献   

19.
The overall water vapor balance and concentration distribution in the flow channels is a critical phenomenon affecting polymer electrolyte fuel cell (PEFC) performance. This paper presents, for the first time, results of a technique to measure in situ water vapor, nitrogen and oxygen distribution within the gas channels of an operating PEFC. The use of a gas chromatograph (GC) to measure high levels of water saturation directly, without dehumidification of the flow stream, is a unique aspect of this work. Following careful calibration and instrumentation, a gas chromatograph (GC) was interfaced directly to the fuel cell at various locations along the serpentine anode and cathode flow paths of a specially designed fuel cell. The 50 cm2 active area fuel cell also permits simultaneous current distribution measurements via the segmented collector plate approach. The on-line GC method allows discrete measurements of the water vapor content up to a fully saturated condition about every 2 minutes. Water vapor and other species distribution data are shown for several inlet relative humidities on the anode and cathode for different cell voltages. For the thin electrolyte membranes used (51 μm), there is little functional dependence of the anode gas channel water distribution on current output. For thin membranes, this indicates that there is little gradient in the water activity between anode and cathode, indicating diffusion can offset electro-osmotic drag under these circumstances (i<0.5 A/cm2). This technique can be used for detailed studies on water distribution and transport in the PEFC.  相似文献   

20.
The anode configuration and gas management strategy are two of factors that affect the energy efficiency of a proton exchange membrane fuel cell. In order to improve the hydrogen utilization, unused hydrogen can be recirculated to the inlet using a pump. However, impurities diffusing from the cathode to the anode may cause the dilution of hydrogen in the anode. As a result, a gas management strategy is required for the anode recirculation configuration. In this preliminary study, a novel configuration for anode recirculation and a gas management strategy are proposed and verified by experiments. Two valves are installed in the recirculation line. The anode is operated in four modes (dead-end, recirculation, compression, and purge), and the real-time local current density (LCD) is monitored for gas management purposes. The results show that the LCD distribution is uniform during the recirculation mode and nonuniform during the dead-end and compression modes. With this configuration and gas management strategy, the cycle duration is increased by a factor of 6.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号