首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of capture on the average system throughput and delay performance of slotted ALOHA were analyzed for slow and fast Rayleigh fading radio channels. A short-range multipoint-to-base station packet radio network is considered. It is shown that larger capture effects and thus improved network performance can be achieved with proper choice of modulation. It is also shown that the use of simple error-correcting codes improves capture. The use of selection diversity also improves the capture effect both for fast and slow fading. It is concluded that the inverse distance variability of the received signal is the main reason for the capture effect. The Rayleigh fading alone yields a very small contribution in terms of throughput; nonetheless, it helps to stabilize the system. Numerical results are presented for a slotted ALOHA system with 50 users. It is found that the maximum average throughput can be increased from about 36% to almost 60% by using channel coding and space diversity  相似文献   

2.
The throughput and delay characteristics of a land-mobile satellite channel are analyzed for both slotted ALOHA. And slotted direct-sequence CDMA (code division multiple access), using binary phase shift keying (BPSK) modulation and forward error correction coding (FEC). In the case of CDMA, the application of path diversity techniques-maximal ratio combining and selection diversity-is also taken into account. Packet success probabilities are derived for both slow and fast fading, in order to evaluate the throughput and delay. Numerical results are presented for arbitrary code lengths and for specific values of the number of resolvable paths. It is shown that CDMA can offer a substantial improvement over slotted ALOHA, especially when the chip time is less than the delay spread  相似文献   

3.
An assessment of spectrum efficiency for a microcellular land mobile radio system is presented by considering the desired signal as (fast) Rician fading with (slow) log-normal shadowing and cochannel interfering signals as uncorrelated (fast) Rayleigh fading superimposed over (slow) log-normal shadowing. Spectrum efficiency is defined in terms of reuse distance, i.e., cluster size, traffic intensity, bandwidth of the system, and area of a cell by considering cochannel interference probability. The expression for cochannel interference probability is derived using appropriate path-loss law for microcells for four different cases: Rician plus log-normal desired signal and Rayleigh plus log-normal interfering signals; Rician desired signal and Rayleigh fading plus log-normal shadowing interfering signals; Rician desired signal and Rayleigh interfering signals; and both desired and interfering signals as Rician fading. The performance of a microcellular system is compared with that of a conventional macrocellular system  相似文献   

4.
Throughput, delay, and stability for two slotted ALOHA packet radio systems are compared. One system is a slotted direct-sequence spread-spectrum multiple-access (DS/SSMA) network where each user employs a newly chosen random signature sequence for each bit in a transmitted packet. The other system is a multiple-channel slotted narrow-band ALOHA network where each packet is transmitted over a randomly selected channel. Accurate packet success probabilities for the code-division multiple-access (CDMA) system are computed using an improved Gaussian approximation technique which accounts for bit-to-bit error dependencies. Average throughput and delay results are obtained for the multiple-channel slotted ALOHA system and CDMA systems with block error correction. The first exit time (FET) is computed for both systems and used as a measure of the network stability. The CDMA system is shown to have better performance than the multiple-channel ALOHA system in all three areas  相似文献   

5.
The authors develop and analyze models of power control that consider other aspects of code-division multiple access (CDMA) systems, such as interleaving and coding on the land mobile radio channel. The orientation is that a power control scheme keeps the received powers at the base station almost equal, and the performance degradation incurred if the powers are not exactly equal will be quantified. In doing so, the authors consider the performance implications of control latency and a maximum speech delay constraint. Because of positive correlations between the fading channel amplitudes, the effectiveness of the combination of interleaving and coding in combating the effects of power variations due to slow Rayleigh fading is reduced. It is shown that power control and interleaving/coding are most effective in complementary parameter regions, thus providing a degree of robustness for both fast and slow Rayleigh fading  相似文献   

6.
A closed form formula is derived for the bit error rate (BER) of orthogonal-frequency-division-multiplexing (OFDM) with M-ary differential-phase-shift-keying (MDPSK) systems in frequency-selective Rayleigh and Rician fading channels with diversity reception. New BER curves are obtained as a function of the rms delay spread of the diffused component for three different types of delay profiles: (1) one-sided exponential, (2) uniform and (3) double spike profiles. Both slow and fast fading conditions are considered. It is shown that the existence of a strong line-of-sight (LOS) component and the use of reception diversity can effectively improve transmission performance  相似文献   

7.
Accurate DS-CDMA Packet-Error Rate Analysis in Rayleigh Fading   总被引:1,自引:0,他引:1  
We present new packet-error rate (PER) analysis for both slotted and unslotted direct-sequence spread-spectrum packet communication systems in a slow Rayleigh fading environment. Based on the accurate improved Gaussian approximation, we derive closed-form expressions for the cumulative probability distribution function of the signal-to-interference-plus-noise ratio in binary phase-shift keying (PSK), quadratic PSK, and differential PSK-based code-division multiple-access (CDMA) systems having different types of chip waveforms including bandwidth-efficient waveforms. This leads to new accurate unified expressions for the PERs that account for bit-to-bit error dependence, which are valid for packets with unequal power levels. These new results facilitate accurate computation of the throughput performance of CDMA-based ALOHA local radio networks  相似文献   

8.
In this paper, a joint delay-power multiple packet capture scheme, that can collect multiple packets simultaneously from different terminals with both delay and power captures, is presented. The corresponding joint delay-power capture probabilities for a spread-spectrum slotted ALOHA packet radio networks where all terminals use a common spreading code under Rayleigh fading with power control are derived. Throughput and delay performance of the spread-spectrum slotted ALOHA packet radio networks with the joint delay-power multiple packet capture effect are shown by our simulation results to be significantly improved compared with the existing schemes.  相似文献   

9.
There are two licenses, 12.5 MHz each, in the S-band for digital satellite-to-vehicle radio broadcasting in the United States. The potential advantages of such a system is that a motorist can enjoy commercial-free music, digital-quality sound and seamless coast-to-coast coverage. One proposal for the broadcast system is to have two satellites covering the continental USA at any given time. There will also be terrestrial repeaters in cities where the receivers on the vehicles cannot see the two satellites. The channels of these systems are affected by Rician, Rayleigh and flat fading caused by shadowing. This paper proposes a forward error correction (FEC) scheme that is not only robust against fading but also enables a low-delay tuning channel so that minimum tuning delay will occur when a user is switching and selecting programs. The scheme uses multiple source coded bit streams employing different interleaver depths. Large interleavers are used to ensure good decoded signal quality while small interleavers are used to minimize tuning delay. The proposed scheme also ensures that a program will not be interrupted by momentary shadowing frequently experienced by a motorist when, for example, a vehicle goes under a highway overpass. The impact of interleaver design on the real-time end-to-end delay and fading due to shadowing is analyzed. Finally, the channel code performance in Rician and Rayleigh fading channels are also presented  相似文献   

10.
Closed-form solutions for the average error rate of MDPSK, coherent MPSK, and noncoherent MFSK over slow, flat, Rician fading are derived. The solutions are sufficiently simple so that no approximations are needed for the numerical computations and general enough so that it includes AWGN and Rayleigh fading as special cases. Error probabilities are graphically displayed for various values of M. The dependence of error rate on the channel specular-to-scatter ratio are plotted and examined. Performance comparisons for a range of values of the Rician parameter K, corresponding to the measured statistics of mobile and indoor wireless channels, are made for the different digital modulation schemes. The analytical results presented in this paper are expected to provide information that is important for radio systems design and the evaluation of performance over a fading channel  相似文献   

11.
Co-channel interference has a very strong impact on the performance of cellular mobile radio systems; a performance measure to evaluate its effect is the outage probability. This work presents an analytical general formula for the outage probability evaluation in full spectrum reuse cellular systems with discontinuous transmission. In particular, both Nakagami and Rician fading along with log-normal shadowing have been considered in the signal propagation model. In addition, the discontinuous transmission strategy is considered. The results are applied to the throughput evaluation of a packet cellular radio network based on the slotted Aloha protocol.  相似文献   

12.
We analyze the system performance of code-division multiple-access (CDMA) random access systems with linear receivers and packet combing in multipath fading channels. Both slotted and unslotted CDMA systems with random spreading codes are considered. The analysis is based on large systems in which both the offered load and the processing gain tend to infinity but their ratio is fixed. It is relatively easy to characterize the traffic in such large systems, which enables us to derive the system throughput and average delay. From the analysis results, it is observed that multiuser detection and packet combining substantially improve the system performance.  相似文献   

13.
Pilot-symbol aided coherent M-ary PSK modems in digital cellular mobile radio systems are analyzed theoretically. The error-floors caused by the Doppler spread in a fast fading channel are removed in both flat and selective fading channels. However, the error-floors caused by the delay spread are lower-bounded by those that exist in the ideal coherent detection. The systems are modeled as frequency-selective fast Rayleigh fading channels, corrupted by co-channel interference (CCI) and additive white Gaussian noise (AWGN). In the proposed scheme, pilot symbols are inserted periodically to monitor the channel characteristics. The fading processes experienced by the pilot symbols are used to estimate those suffered by the data symbols using interpolation or filtering. The estimated fade characteristics are used to compensate the random phase variation caused by the Doppler spread, so that the signals can be demodulated coherently. The theoretical performances of the fade compensated coherent modems are evaluated. The results show that the fade compensated coherent demodulation with the least redundancy achieves the same performance as the ideal differential detection in a fading channel. The performance approaches that of the ideal coherent demodulation as more redundancy is allowed. The pilot-symbol-insertion (PSI) scheme is also applicable to M-ary QAM modems and Rician channels. The residual frequency offset can also be compensated by the PSI technique  相似文献   

14.
Multiuser detection for asynchronous code division multiple access (CDMA) data transmission over the time-dispersive two-path Rician fading channel is considered. The multiuser maximum likelihood sequence detector (MLSD) is derived, and an equivalence of the fading channel to an asynchronous Gaussian intersymbol interference (AGISI) CDMA channel is established. However, the MLSD is found to be implementationally infeasible and this motivates the derivation of the optimum linear detector with near/far resistance as the performance criterion. The optimally near/far resistant linear time-invariant K-user detector is shown to consist of a cascade of a 2 K input/K output linear multiuser diversity combining filter followed by a K input/K output decorrelator that is designed for the equivalent AGISI/CDMA channel. This detector solves the near/far problem and also supports significantly higher bandwidth efficiencies for CDMA communication over the fading channel than does the conventional near/far limited single-user diversity combiner. The performance penalties incurred by multiuser detectors designed for the Gaussian channel when used over the Rician fading channel are also analytically characterized. It is shown that these penalties can be significant, making the case for the use of multiuser detectors optimized for this fading channel, particularly the optimum linear detector due to its relative implementational simplicity  相似文献   

15.
This paper presents an analytical framework for the performance evaluation of cellular mobile radio systems equipped with smart antenna systems. In particular, the paper focuses on low-complexity systems which are able to successively suppress the strongest active interferers. The desired user fading statistics is assumed to be flat Rayleigh, Rician, or Nakagami, whereas the interfering signals are assumed to be independent and subject to slow flat Rayleigh fading. The paper starts by presenting generic closed-form expressions for the the carrier-to-interference ratio probability density function after interference cancellation. Based on that, exact closed-form expressions for the outage probability and average error rate formulas are derived. Finally, a comparison with a practical cancellation scheme and the impact of some practical considerations on the performance of successive interference cancellation are investigated. More specifically, the effect of traffic loading, the overall spectral efficiency gain, and the impact of time delay are studied.  相似文献   

16.
On the spectral efficiency of wideband CDMA systems   总被引:1,自引:0,他引:1  
The reverse-link spectral efficiency is evaluated for a direct-sequence (DS) code division multiple access (CDMA) cellular communication system that employs rapid closed-loop power control and coding with interleaving on channels that exhibit doubly selective Rician fading. The focus of the paper is the effect of the chip rate of the DS spread-spectrum signal on the spectral efficiency of the system. Performance is considered for systems with different numbers of demodulators in the RAKE receiver and for systems both with and without antenna diversity. Channels with different delay spectra and Doppler spreads are used to examine the performance of the system in various operating conditions. The implications of the results for the design of wideband CDMA are discussed  相似文献   

17.
A time diversity automatic repeat-request (ARQ) scheme is investigated for slotted random access direct-sequence code-division multiaccess (DS/CDMA ALOHA) wireless packet radio networks on multipath Rayleigh fading channels. The receiver retains and processes all the retransmissions of a single data block (packet) using predetection diversity combining, instead of discarding those which are detected in error. This effectively improves the system throughput and delay characteristics especially at small values of signal-to-noise ratio (SNR) per bit. A simple and practical selection combining rule is proposed, which lends itself to a low-complexity receiver structure and specifically suitable for high data rate transmissions. Owing to the stochastic nature of the multiple access interference, the new maximum output selection diversity (MO/SD) system yields superior performance in comparison to the traditional maximum SNR selection diversity (SNR/SD) model. The bit error rate performance, throughput and the average number of transmissions required to transmit a packet successfully with and without forward error correction (FEC) are evaluated. Numerical results reveal that the proposed adaptive retransmission diversity with packet combining provides a considerable advantage over the conventional slotted DS/CDMA ALOHA without incurring a substantial penalty in terms of cost or complexity.  相似文献   

18.
The performance of noncoherent reception in fast frequency hopped spread-spectrum (FFH-SS) communication systems operating through noisy, fading multipath channels is investigated. Systems operating with binary frequency-shift keying (BFSK) modulation and noncoherent demodulation are examined under the assumption of very slow fading. These analyses demonstrate the frequency hopping benefits in selective channels. Expressions are derived for the bit error rate in the context of selective Rayleigh and selective Rician fading channels, as a function of channel and system parameters  相似文献   

19.
Adaptive linear interference suppression for direct-sequence (DS) code-division multiple access (CDMA) is studied in the presence of time- and frequency-selective fading. Interference suppression is achieved with an adaptive digital filter which spans a single symbol interval. Both decision-directed and blind adaptive algorithms, which do not require a training sequence, are considered. Modifications to least squares adaptive algorithms are presented which are compatible with differential coding and detection. For frequency-selective fading, adaptive algorithms are presented based upon different assumptions concerning knowledge of the desired user's channel. Specifically, the cases considered are as follows: (1) perfect knowledge of the desired channel; (2) knowledge of only the relative path delays; and (3) knowledge of only one delay corresponding to the strongest path. Computer simulation results are presented which compare the performance of these algorithms with the analogous RAKE receivers. These results show that for case (3), even slow fading can cause a significant degradation in performance. Effective use of channel parameters in the adaptive algorithm reduces the sensitivity to fade rate, although moderate to fast fading can significantly compromise the associated performance gain relative to the RAKE receiver  相似文献   

20.
Symbol and bit error rates of M-ary differentially encoded/differentially decoded phase-shift keying (MDPSK) and coherent M-ary phase-shift keying (M-PSK) over slow, flat, Rician fading channels are derived when linear diversity combining is applied to combat degradation due to fading. These closed-form solutions are general enough to cover several cases of nondiversity, additive white Gaussian noise (the nonfading mode), Rayleigh fading, mixtures of Rayleigh and Rician fading (the mixed mode), and Rician fading. The results presented here can also be applied to predict the error-rate performance when recent transmit diversity techniques are employed. The solutions for the nonuniform fading profile are included as well. Error probabilities are graphically displayed for both modulation schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号