首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 578 毫秒
1.
为满足土地质量调查的需求,实现土壤中多组分的同时消解及准确测定,提高大批量样品的分析效率,建立了土壤样品经高压密闭消解后,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定K2O、Na2O、CaO、MgO、Ba、Mn、Cu、Zn的方法。通过对消解体系、酸用量、消解温度等方面的考察,确定最佳实验条件;并对待测液中共存元素Al、Fe的干扰进行探讨,两者均不干扰测定。各组分校准曲线线性相关系数均大于0.999;检出限为0.01~10μg/g。实验方法用于测定土壤标准样品GBW07385、GBW07386、GBW07388中K2O、Na2O、CaO、MgO、Ba、Mn、Cu、Zn,测定结果的相对标准偏差(RSD,n=12)为1.1%~4.3%,相对误差RE为-4.0%~4.6%。采用实验方法对土壤实际样品中K2O、Na2O、CaO、MgO、Ba、Mn、Cu、Zn进行测定,结果的RSD(n=6)为1.2%~4.6%;并与地矿行业标准方法DZ/T 0279.2—2016测定结果进行比对,测得结果基本一致。  相似文献   

2.
为满足土地质量调查的需求,实现土壤中多组分的同时消解及准确测定,提高大批量样品的分析效率,建立了土壤样品经高压密闭消解后,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定K2O、Na2O、CaO、MgO、Ba、Mn、Cu、Zn的方法。通过对消解体系、酸用量、消解温度等方面的考察,确定最佳实验条件;并对待测液中共存元素Al、Fe的干扰进行探讨,两者均不干扰测定。各组分校准曲线线性相关系数均大于0.999;检出限为0.01~10μg/g。实验方法用于测定土壤标准样品GBW07385、GBW07386、GBW07388中K2O、Na2O、CaO、MgO、Ba、Mn、Cu、Zn,测定结果的相对标准偏差(RSD,n=12)为1.1%~4.3%,相对误差RE为-4.0%~4.6%。采用实验方法对土壤实际样品中K2O、Na2O、CaO、MgO、Ba、Mn、Cu、Zn进行测定,结果的RSD(n=6)为1.2%~4.6%;并与地矿行业标准方法DZ/T 0279.2—2016测定结果进行比对,测得结果基本一致。  相似文献   

3.
石灰性土壤中有效磷的测定通常采用钼锑抗分光光度法,操作复杂、检出限高。采用碳酸氢钠浸提-基体掩蔽结合电感耦合等离子体原子发射光谱法(ICP-AES)实现了对大批量土壤样本中有效磷的高效分析。实验中采用pH值为8.5、0.5 mol/L碳酸氢钠溶液为浸提液,按照20∶1的水土比(浸提液体积(mL)与土壤质量(g)之比)于(25±1)℃下振荡提取30 min;用定量滤纸过滤后,分取20.00 mL滤液,加入2 mL 硝酸(1+1)酸化,用250 mg的丁二酸掩蔽碱金属离子,选择P 214.914 nm为分析谱线,采用ICP-AES测定磷。结果表明,磷质量浓度与其发射强度在一定范围内呈良好的线性关系,线性相关系数为0.999 7。方法检出限为0.004 6 mg/kg,定量限为0.015 mg/kg。方法用于测定土壤标准物质(GBW07413a、GBW07414a、GBW07459、GBW07460、GBW07461)中有效磷,测定值与认定值基本相符,测定结果的相对标准偏差(RSD, n=6)为0.87%~2.1%;用于土壤样品中有效磷的测定,测定结果的相对标准偏差(n=6)不大于1.7%,与农业部标准方法(NY/T 1121.7—2014)测得的结果基本一致,无显著性差异。  相似文献   

4.
Cr(VI)量是土壤环境监测的重要指标,Cr(VI)的浸取和准确测定对土壤污染监测及修复治理至关重要。实验采用Na2CO3-NaOH碱性提取液、磷酸盐缓冲溶液-MgCl2体系于92.5 ℃恒温水浴振荡的方式浸提土壤中Cr(VI),在4 000 r/min下离心10 min,用注射器配合针孔滤膜过滤,利用酚酞作指示剂,用50%(体积分数) HNO3调节待测液pH值至7.0~8.0,二次分离Cr(Ⅲ)和Cr(VI),从而实现了火焰原子吸收光谱法(FAAS)对土壤中Cr(VI)的测定。在选定的条件下,Cr(Ⅵ)在0.10~2.00 μg/mL范围内与其吸收强度呈正比,相关系数为0.999 3;方法检出限为0.43 μg/g,定量限为1.51 μg/g。在检测过程中,待测液盐分过高、流量的增加会造成盐分在燃烧头快速积聚,从而影响测定结果;试验表明,每测一件样品后用20% HNO3(体积分数)清洗燃烧头5 s的方式可消除该物理干扰。应用实验方法对3种不同含量水平的土壤中六价铬成分分析标准物质GBW(E)070252、GBW(E)070254、GBW(E)070255及4种工业用地土壤样品平行测定12次,标准物质的测定值与认定值基本一致,实际样品测定结果的相对标准偏差(RSD,n=12)均不大于5.6%。按照实验方法测定土壤中六价铬成分分析标准物质并取不同量易溶的K2Cr2O7和难溶的PbCrO4进行加标回收试验,回收率在94%~106%之间。  相似文献   

5.
石慧  王恒 《冶金分析》2019,39(2):29-33
以水为溶剂超声浸取样品,加入适量0.25mol/L柠檬酸三钠-1mol/L硝酸钾溶液作为总离子强度调节剂,控制响应时间为5min,建立了离子选择电极法测定银精矿中水溶性氯的测定方法。对超声浸取的条件进行了优化,确定浸取条件如下:采用20mL水在水浴温度为50℃时对0.5g样品超声浸取15min。对测定条件进行了考察,结果表明,为减少电位的波动,保证测定结果的准确性,电极响应斜率S值的测定与样品测试均应在同一恒温体系下进行。在优化的实验条件下,氯离子在2~12μg/mL范围内其质量浓度的自然对数与电位值呈良好的线性关系,相关系数为0.9998,检出限为0.863μg/mL。选取两个银精矿样品,按实验方法分别平行测定6次,测定值与离子色谱法的测定值基本一致,相对标准偏差(RSD)为2.1%~2.8%。  相似文献   

6.
钒电池电解液的酸根组成和浓度会严重影响电池的效率,需要准确地测定各种酸根的浓度,以便及时地进行调节。重量法是测定硫酸根的经典方法,但操作步骤繁琐、耗时较长,不能满足过程控制调整的要求。实验采用EDTA络合钒,再以NaOH标准滴定溶液利用酸碱滴定法测定溶液中总氢离子浓度,根据样品中不同价态钒的浓度通过计算即可得到样品中硫酸根浓度,实现了电位滴定法对含钒电解液中硫酸根离子的检测。实验对EDTA加入量、EDTA加入形式进行优化。分别按照实验方法和重量法测定1个钒电池电解液中硫酸根,两种方法无显著性差异;按照实验方法对两个钒电池电解液样品中硫酸根进行加标回收试验,回收率为98.9%~100.0%;按照实验方法测定3个钒电池电解液样品中硫酸根,结果的相对标准偏差(RSD,n=5)为0.13%~1.2%。分别使用实验方法和重量法测定含有不同价态钒的3个钒电池电解液中硫酸根,结果相吻合。  相似文献   

7.
燃烧碘量法是分析硫的经典方法,但将其应用于地质样品分析时,样品中的氯会对测定产生干扰。实验在对助熔剂、样品燃烧分解温度和滴定方式优化的基础上,以数学方程校正法消除了氯对硫的干扰,建立了燃烧碘量光电滴定法测定地质样品中硫的方法。实验表明,控制温度为1250~1300℃时样品可充分燃烧分解;采用低空白值的二氧化硅做为燃烧助熔剂有效降低了方法的检出限;利用以硒光电池电位变化指示终点的方法即光电滴定法替代传统的目视滴定法可弥补因视觉观察而产生的误差,提高了测定结果的准确性。在不同性质(水系沉积物、岩石和土壤)国家标准物质中加入优级纯氯化钠进行氯的干扰试验,结果表明,氯对硫的干扰量与氯的含量呈线性关系,据此,得到了对氯干扰进行校正的数学方程。方法检出限为17.4μg/g、测定下限为58.0μg/g。采用实验方法测定不同性质的地质国家标准物质(土壤和水系沉积物)中硫,结果与认定值的相对误差(RE)为-3.41%~+5.00%,对数差(ΔlgC)为-0.015%~+0.022%,相对标准偏差(RSD,n=12)为0.75%~2.5%。  相似文献   

8.
张珂  马明  马龙  蔡梦  李艳香 《冶金分析》2018,38(5):66-71
铁矿石中氧化亚铁在检测过程中易被氧化,而采用电位滴定法测定时可直接在密闭容器中插入电极进行检测,从而避免亚铁离子被氧化,因此试验建立了电位滴定法测定铁矿石中氧化亚铁的方法。采用盐酸溶解样品,氟化铵加入量为0.5g使硅酸盐充分分解,样品分解时间为15min,无需加入硫磷混酸。以电位滴定法代替滴定法进行检测,对仪器工作条件进行了正交试验优化,设定滴定终点筛选标准(EPC)为20,最小加液量为20μL,信号漂移速率为50mV/min。实验方法用于测定4个铁矿石及岩石类标准样品中氧化亚铁,结果的相对标准偏差(RSD,n=10)不大于0.40%,测定值与认定值基本一致,相对误差(RE)不大于0.33%;分别按照实验方法和国标方法GB/T 6730.8—2016测定9个铁矿石及岩石类标准样品中氧化亚铁,测定值与国标方法测定值相吻合。  相似文献   

9.
硅藻土是一种重要的非金属矿产,其主次组分的测定一般采用重量法、滴定法等,操作过程繁琐、化学试剂用量大、分析周期长。实验采用熔融法制样,X射线荧光光谱法(XRF)同时测定硅藻土中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2等主次组分。选择高纯试剂人工合成校准样品系列,用测定烧失量后的样品制备玻璃熔片,克服了缺少硅藻土标准物质及烧失量对测定结果的影响。样品与四硼酸锂-偏硼酸锂-氟化锂混合熔剂(质量比为4.5∶1∶0.4)的稀释比为1∶10,LiBr溶液作为脱模剂,在1050℃熔融9min制备熔融片。各组分校准曲线的线性相关系数在0.9962~0.9999之间;方法检出限在18~266μg/g之间。按照实验方法测定硅藻土样品中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2,测定结果的相对标准偏差(RSD,n=8)在0.25%~1.4%之间。所建方法应用于相近标准物质(GBW03103软质粘土和GBW03114硅质砂岩)和4种不同品位的硅藻土样品中各组分的测定,测定结果与标准物质认定值或实际样品湿法测定值基本一致。  相似文献   

10.
钨尾矿中水溶性氟、氯和硫酸根的准确测定对尾矿堆放区周边环境的水质监测具有重要意义。实验通过循环水控温超声提取方式提取样品中水溶性氟、氯和硫酸根,实现了离子色谱法对钨尾矿中这3种水溶性阴离子的测定。通过优化超声提取条件,确定了提取液加入量为80 mL,超声功率为350 W,超声时间为12 min,与标准GB 5085.3—2007《危险废物鉴别标准浸出毒性鉴别》相比,通过适当增大超声功率,缩短了超声时间;采用循环水控制超声温度,有效解决了因超声振动造成提取液温度升高,测定结果不稳定的问题。实验表明,氟、氯和硫酸根的校准曲线相关系数均大于0.999,方法检出限分别为0.19、0.32、0.41 mg/kg,测定下限分别为0.76、1.28、1.64 mg/kg。将实验方法应用于钨尾矿样品中水溶性氟、氯和硫酸根的测定,测得结果的相对标准偏差(RSD,n=6)为0.4%~3.6%,加标回收率为95%~103%,实验方法测定值分别与离子选择电极法测定水溶性氟,电位滴定法测定水溶性氯,重量法测定水溶性硫酸根的结果基本一致。  相似文献   

11.
鉴于硝酸银滴定法测定岩石矿样中氯离子的前处理方式一般采取去离子水浸泡、振荡萃取、过滤等,操作手续冗长,易污染,难过滤的特点,实验研究了超声萃取-硝酸汞滴定法测定石英砂岩中氯离子的方法。即通过对国家标准岩石样品GBW07106进行超声萃取、静置、然后离心分离,用硝酸汞滴定法测定离心液中的氯离子含量,进而计算出石英砂岩中的氯含量。通过试验确定了对样品进行超声萃取2h、以硫酸铝钾为萃取剂、萃取时间为30min和离心分离时间为10min的前处理方案。对大于10mg/L铬酸盐和大于140mg/L Fe3+对Cl-测定的干扰,可加入2mL 100g/L对苯二酚溶液消除;对大于10mg/L硫化物和亚硫酸盐的干扰,可先用氢氧化钠调节溶液至弱碱性,然后加入1mL 30%过氧化氢摇匀,再加热除去剩余过氧化氢的方法消除其对Cl-测定的干扰。采用实验方法对石英砂岩进行测定,结果的相对标准偏差(RSD,n=5)为5.5%和6.2%,回收率为97%~103%。  相似文献   

12.
称取0.2g样品,置于预先盛有(0.300±0.005)g锡粒的坩埚内,覆盖(0.400±0.005)g纯铁和(2.000±0.005)g钨粒进行分析,建立了高频燃烧红外吸收法测定氮化硅铁中碳含量的分析方法。实验中,考虑到氮化硅铁标准样品较少,故选择由0.04g氮化硅标准样品JCRM R008和0.16g纯铁标准样品GBW 01148a混合配制的氮化硅铁合成校准试样(w(C)=0.025 7%)与氮化硅铁标准样品GSB 03-2469-2008(w(C)=0.35%)来绘制校准曲线。方法中碳的线性范围为0.025%~0.35%,检出限为0.000 45%。由0.10g氮化硅标准样品JCRM R008和0.10g纯铁标准样品GBW 01148a混合配制氮化硅铁合成样品1,以及由0.08g氮化硅铁标准样品GSB 03-2469-2008和0.12g氮化硅标准样品JCRM R006混合配制氮化硅铁合成样品2,采用实验方法对其中碳进行测定,测定值与认定值基本一致。采用实验方法对氮化硅铁实际样品中的碳进行测定,所得结果的相对标准偏差(RSD,n=6)为1.2%~1.7%。  相似文献   

13.
采用加酸后超声震荡的方法处理样品,建立了电位滴定法测定了硅钢涂层用纳米二氧化钛中氯离子含量的方法。实验确定了最佳条件:称取0.1 g过300目(50 μm)筛孔的样品,加入20 mL硝酸(1+5)后,在90 kHz的条件下室温超声振荡30 min,过滤后稀释,以等体积自动加入0.10 mL 0.01 mol/L硝酸银标准滴定溶液的方式进行滴定,以d2E/dV2-V滴定曲线中E/V的二阶倒数为零时计算滴定终点。将方法应用于硅钢涂层用纳米二氧化钛实际样品分析,结果与分光光度法一致,相对标准偏差(RSD, n=8)小于5%,加标回收率为99%~102%。  相似文献   

14.
B、Ge、Mo、Sn、I和W是区域地质调查样品54种元素必测项目,目前对这6种元素的测定广泛使用的方法基本是单独或两项结合进行样品的制备和测定,分析效率较低。实验建立了Na2O2熔融样品,强酸型阳离子树脂交换分离高含量钠盐,电感耦合等离子体质谱法(ICP-MS)同时测定地质样品中B、Ge、Mo、Sn、I和W的方法。通过试验确定了对于0.5000g地质样品,以3.0g Na2O2为熔剂于750℃熔融8min,样品可熔解完全;对于引入的钠盐,通过对待测溶液使用强酸型阳离子交换树脂动态交换振荡30min可消除Na+对待测元素的影响;且测试时在每2个待测液之间以0.5%(V/V)氨水作清洗液可降低B、I的记忆效应。采用校正方程在线校正了74Ge的同量异位素干扰;选用碰撞模式测定Mo和W,消除多原子离子干扰;B、Ge、Sn和I选用普通模式测定。结果表明,在优化的条件下,B、Ge、Mo、Sn、I和W的检出限在0.092~0.57μg/g之间。按照实验方法对土壤成分分析标准物质GBW07451和水系沉积物成分分析标准物质GBW07362中B、Ge、Mo、Sn、I和W进行测定,相对误差和相对标准偏差均满足DZ/T 0258—2014《多目标区域地球化学调查规范》的要求。优化后的方法用于实际地质样品的分析,测定值与经典方法的结果一致,实现了B、Ge、Mo、Sn、I和W的同时测定,提高了测试效率。  相似文献   

15.
采用硫酸高铁铵滴定法测定钛时,铬的存在会干扰测定。莫桑比克某重砂矿选冶流程样品中含有铬,在采用硫酸高铁铵滴定法测定钛时,需先分离铬。实验以过氧化钠碱熔处理样品,而后将冷却后的坩埚放入盛有100~150mL水的300mL烧杯中,将烧杯置于高温电炉上煮沸5~8min以溶解熔融物并除尽过氧化氢,此时钛以氢氧化钛形式存在于沉淀中,铬以铬酸根形式存在于溶液中。经过滤分离后,铬存在于滤液中,后续以苯代邻氨基苯甲酸为指示剂,采用硫酸亚铁铵滴定法进行测定;钛存在于滤纸上的沉淀中,先依次用热盐酸(1+1)和水洗入锥形瓶中,而后以硫氰酸钾为指示剂,采用硫酸高铁铵滴定法进行测定。对铬干扰钛测定的机理进行了研究和讨论,分析认为可能是因为在钛的测定过程中生成了二价铬,从而消耗了硫酸高铁铵标准溶液进而影响了对钛的测定。将实验方法用于标准样品及1组焙烧磁选后的精矿(6-6-1精)和尾矿(6-6-1尾)中二氧化钛和三氧化二铬的测定,二氧化钛测定值与认定值相符,相对标准偏差(RSD,n=7)为0.082%~0.81%;三氧化二铬测定值与认定值及无过滤分离步骤的硫酸亚铁铵滴定法测定值均相符,相对标准偏差(n=7)为0.25%~1.79%。  相似文献   

16.
氯元素是土地质量调查和评价的重要指标,在地质行业中,分析氯的行业标准方法为X射线荧光光谱法(DZ/T 0279.10—2016),其难点在于氯容易污染,测量值极易受测量时间、测量次数、样片保存条件等因素影响。实验将样品在高温条件下分解,生成的氯化物经过硫酸干燥后进入元素分析仪的电解池吸收池,吸收产生的Cl与电极产生的Ag+发生反应生成氯化银沉淀,元素分析仪可根据滴定平衡电位自动判断滴定终点,自动计算出样品中氯的含量。试验发现,电解液中加入过量乙酸,可以有效抑制水电解,避免因水电解产生的分析误差。方法的检出限为10.4 μg/g。采用实验方法测定土壤和水系沉积物国家标准物质中氯,结果的相对标准偏差(RSD,n=12)小于7%,相对误差(RE)小于6%。实际样品的分析结果与X射线荧光光谱法测定结果的双差(RD)满足规范要求。实验方法采用固体进样,样品使用量少(0.050 0~0.150 0 g),无需曲线校准,适合于大批量样品检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号