首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 546 毫秒
1.
冯晓军  姜威  薛菁  史鑫 《冶金分析》2017,37(5):53-58
样品采用偏硼酸锂熔剂,加入溴化锂脱模剂、硝酸锂氧化剂在1 050℃高频熔样机上熔融4min,硝酸酸化提取定容后,采用基体匹配法配制校准曲线消除基体效应的影响,选取高盐雾化器进样直接用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷矿中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫。试验进行了熔剂与样品的稀释比、脱模剂选择、氧化剂选择、熔样温度、熔样时间、溶液酸度和溶液稳定性等条件试验,确定了最佳试验条件。方法检出限为0.000 2~0.025 8μg/g。按照实验方法测定磷矿样品中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫,结果的相对标准偏差(RSD,n=11)为0.48%~1.3%。按照实验方法测定GBW 07210、GBW 07211、GBW 07212共3个磷矿石标准样品中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫,测定值与认定值(或者国家标准方法 GB/T 1880—1995的测定值)基本一致。  相似文献   

2.
宾曦  王娟  刁正斌 《冶金分析》2020,40(8):67-71
对于钛精矿中硫的测定,现有标准方法为燃烧-碘量法,该方法的分析流程较长,不适合大批量样品的分析;同时方法的测定范围有限,仅适合硫质量分数在0.025%~0.500%的样品。为适应现有钛精矿的生产和科研需要,实验建立了高频炉燃烧红外吸收法测定钛精矿中硫的分析方法。对样品量、燃烧用助熔剂种类及用量等测试条件进行了优选。确定的最佳分析条件为:称取0.40g样品于坩埚中,加入0.5g锡粒、0.3g纯铁屑、1.3g钨粒助熔剂进行测定。采用钛精矿标准样品分段绘制硫的校准曲线,硫质量分数的测定范围为0.0048%~2.76%;方法定量限为0.0006%,完全满足现有钛精矿的测定需求。对硫质量分数在0.0092%~1.51%的钛精矿样品进行了测定,测定值的相对标准偏差(n=8)为0.33%~1.8%。实验方法的测定结果与硫酸钡重量法吻合,对低硫样品的加标回收率为90%~105%。  相似文献   

3.
羊绍松 《冶金分析》2015,35(4):25-29
通过石灰石标准样品高温灼烧后绘制校准曲线,解决了绘制校准曲线用活性类石灰无标准样品,又难同时准备足够多且有梯度生产样品等难题;烧结用石灰样品经高温灼烧后压片制样,大大减小了石灰样品基体干扰并完全消除粒度效应,从而实现粉末压片-X射线荧光光谱法对石灰石、活性石灰、生石灰中氧化钙、氧化镁和二氧化硅含量的测定。氧化钙、氧化镁和二氧化硅校准曲线的相关系数均大于0.999。对同一活性石灰样品进行精密度考察,3种组分测定结果的相对标准偏差(RSD,n=11)在0.086%~2.3%范围内。对生石灰、活性石灰炼铁烧结工序生产样品进行分析,测定值与熔融制样-X射线荧光光谱法的测定值一致;对石灰石标准样品进行分析,测定值与校正后的认定值相吻合。  相似文献   

4.
黑色页岩中硅和有机质含量较高,实验采用在750℃马弗炉中灼烧除碳后,经盐酸-氢氟酸-硝酸在200℃消解处理样品,使四氟化硅逸出。选择P 213.618nm、Mg 285.213nm、Fe 259.940nm、Al 396.152nm、Ca 317.933nm、Mn 257.610nm、Ti 334.941nm为分析谱线,选取耐氢氟酸进样系统,直接用电感耦合等离子体原子发射光谱法(ICP-AES)测定五氧化二磷、氧化镁、氧化铁、氧化铝、氧化钙、氧化锰、二氧化钛,从而建立了云南昆阳磷矿黑色页岩中五氧化二磷、氧化镁、氧化铁、氧化铝、氧化钙、氧化锰、二氧化钛的分析方法。在仪器最佳工作条件下,各组分校准曲线的线性相关系数均不小于0.9996;方法检出限为0.0012~0.028μg/g。方法应用于云南昆阳磷矿黑色页岩样品中五氧化二磷、氧化镁、氧化铁、氧化铝、氧化钙、氧化锰、二氧化钛的测定,结果的相对标准偏差(RSD,n=11)为0.29%~1.5%;加标回收率为97%~105%。按照实验方法测定西藏地区沉积物国家标准物质(GBW 07320、GBW 07328、GBW 07331)中五氧化二磷、氧化镁、氧化铁、氧化铝、氧化钙、氧化锰、二氧化钛,测定值与认定值基本一致。  相似文献   

5.
选用铁矿石试样与混合熔剂(四硼酸锂-偏硼酸锂-溴化锂)、稀释比为1∶12、1 000 ℃熔融25 min制备熔片,应用X射线荧光光谱法(XRF)测试铁矿石中全铁、二氧化硅、三氧化二铝、氧化钙、氧化镁、氧化锰、二氧化钛、磷、硫、氧化钾、氧化钠、五氧化二钒、铬、镍、铜、锌、砷、铅、氧化钡等19种组分。通过标准物质、光谱纯物质、人工合成样品及化学定值样品制作校准曲线并进行分段回归。添加氧化钴作内标校正元素铁,应用康普顿散射线校正铜、锌、砷、铅,采用经验系数法校正其他14种组分,可有效克服测定各类铁矿石中各组分时基体效应的影响。对铁矿石样品进行精密度试验考察,各组分测定结果的相对标准偏差(RSD,n=11)在0.13%~7.7%之间;对标准样品及未知样品进行准确度考察,测定值与认定值或湿法值一致。  相似文献   

6.
石灰石、白云石样品与混合熔剂(Li2B4O7-LiBO2-LiBr)稀释比为1∶8,硝酸锂做氧化剂、950 ℃熔融20 min制备玻璃片,应用X射线荧光光谱法(XRF)测定石灰石、白云石中氧化钙、氧化镁、二氧化硅、三氧化二铝、三氧化二铁、氧化锰、磷、硫、二氧化钛、氧化锶、氧化钾和氧化钠12种组分。通过标准样品、光谱纯物质、标准样品与标准溶液合成样品及化学定值样品制作校准曲线并进行分段回归。应用康普顿散射线校正铁、锰、锶元素,经验系数法校正其他9种元素,可有效克服石灰石、白云石中各组分测定时基体效应的影响。对样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)在0.18%~11.4%之间。对标准样品及未知样品进行正确度考察,测定值与认定值或湿法值一致。  相似文献   

7.
使用化学湿法测定磷铁中各元素含量时,用酸溶解样品,不加氢氟酸样品溶解不完全,而加入氢氟酸会使样品中硅生成气态四氟化硅,因此要同时测定磷铁中锰、钛、硅和磷,必须使用碱熔解样品。实验用氢氧化钠和过氧化钠熔解磷铁样品,硝酸浸取后用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷铁中锰、钛、硅和磷。采用基体匹配的方法绘制校准曲线,各元素校准曲线的线性相关系数均为0.99998;选择各元素分析谱线分别为Mn 257.610nm、Ti 334.941nm、Si 288.158nm和P 178.222nm;方法中各元素的定量限分别为:锰0.015%(质量分数,下同),钛0.015%,硅0.023%,磷0.13%。按照实验方法测定两个磷铁标准样品和两个磷铁样品,测定结果的相对标准偏差(RSD,n=11)为0.29%~4.2%;分别按照实验方法和其他方法(其中火焰原子吸收光谱法(AAS)测定锰、X射线荧光光谱法(XRF)测定钛、磷以及硅钼蓝分光光度法测定硅)测定磷铁中锰、钛、硅和磷,结果相吻合。  相似文献   

8.
乔蓉  郭钢 《冶金分析》2014,34(1):75-78
将白云石、石灰石标准样品直接压片, 通过灼烧减量对氧化钙、氧化镁和二氧化硅含量进行校正, 根据其含量与强度的对应关系绘制校准曲线, 建立了X射线荧光光谱法(XRF)测定白云石、石灰石中这3种主要成分的方法。对一部分试样直接压片测定, 同时另一部分试样进行灼烧减量试验, 可大大节约标准样品的用量。灼烧时间试验表明, 试样在1 100 ℃下灼烧0.5 h就可达到恒重;粒度试验表明, 样品粒度大于200目时可消除粒度效应的影响。用CaO和MgO含量进行基体校正, 可消除其对低含量SiO2的影响;采用经验系数法可消除元素间的吸收-增强效应。精密度试验结果表明, 氧化钙、氧化镁和二氧化硅测定结果的相对标准偏差(n=8)在0.038%~3.5%之间;对石灰石和白云石标准样品和实际样品进行准确度考察, 测定值与认定值或滴定法的测定值一致。  相似文献   

9.
使用化学湿法测定磷铁中各元素含量时,用酸溶解样品,不加氢氟酸样品溶解不完全,而加入氢氟酸会使样品中硅生成气态四氟化硅,因此要同时测定磷铁中锰、钛、硅和磷,必须使用碱熔解样品。实验用氢氧化钠和过氧化钠熔解磷铁样品,硝酸浸取后用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷铁中锰、钛、硅和磷。采用基体匹配的方法绘制校准曲线,各元素校准曲线的线性相关系数均为0.99998;选择各元素分析谱线分别为Mn 257.610nm、Ti 334.941nm、Si 288.158nm和P 178.222nm;方法中各元素的定量限分别为:锰0.015%(质量分数,下同),钛0.015%,硅0.023%,磷0.13%。按照实验方法测定两个磷铁标准样品和两个磷铁样品,测定结果的相对标准偏差(RSD,n=11)为0.29%~4.2%;分别按照实验方法和其他方法(其中火焰原子吸收光谱法(AAS)测定锰、X射线荧光光谱法(XRF)测定钛、磷以及硅钼蓝分光光度法测定硅)测定磷铁中锰、钛、硅和磷,结果相吻合。  相似文献   

10.
熔融制样-X射线荧光光谱法测定钛铁合金中化学成分,核心技术是合金试样氧化技术,以有效避免样品熔融过程中铂-金坩埚受到侵蚀。在石墨垫底的瓷坩埚内以专用助熔剂将钛铁样品氧化成钛铁熔球,以四硼酸锂与碳酸锂混合熔剂熔融制备成玻璃片,建立X射线荧光光谱法(XRF)测定钛铁中钛、硅、锰、磷、铝含量的方法。试验探讨了熔剂选择、助熔剂用量、氧化条件、稀释比、脱模剂、熔融时间等条件对玻璃片质量及检测结果的影响,确定了最佳氧化、熔融实验条件。熔融制得的玻璃片强度高、质地均匀、检测面光洁,满足XRF测定要求。使用有证标准物质建立校准曲线,钛、硅、锰、磷、铝校准曲线相关系数介于0.999 6~1.000 0之间,校准曲线相关性满足XRF要求。方法应用于钛铁合金样品检测,各元素测定结果的相对标准偏差(RSD)介于0.25%~6.5%之间;准确度实验表明,钛铁标准样品测定结果与认定值相符。实验方法解决了钛铁熔融制样过程腐蚀铂-金坩埚问题,实现了钛铁合金中钛、硅、锰、磷、铝含量的同时快速分析,能够满足钛铁合金质量控制及作为炼钢生产指导的日常检测需求。  相似文献   

11.
粉末压片法是一种理想的绿色环保制样方法,简单快速,但是粒度效应对测定结果的影响很大,限制了这种方法在很多领域的应用。为了解决粒度效应对粉末直接压片法的影响,实验利用超高速行星式超细碎样机,将磷矿石标准物质粉碎至微米级,采用粉末直接压片制样,利用波长色散X射线荧光光谱仪对磷矿石中12种组分(氟、五氧化二磷、二氧化硅、三氧化二铝、全三氧化二铁、氧化锰、二氧化钛、氧化锶、氧化钙、氧化锰、氧化钾、氧化钠)进行了测定。结果表明,将样品粉碎至微米级,能够有效地克服样品的粒度效应,获得了比较满意的结果;特别是将氟的测定范围提高到了10.68%,对轻组分氧化钾和氧化钠的测定结果也很好。采用多种磷矿石标准物质和人工配制标准物质制作校准曲线,各组分的均方根为0.001 1~0.53。校准曲线采用经验系数和康普顿散射线内标法校正组分间的吸收-增强效应,方法的检出限为3~282 μg/g。对两个磷矿石国家标准样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)为0.17%~5.2%。对采用标准物质配制的混合标准样品进行准确度考察,测定值与参考值一致。  相似文献   

12.
任保林 《冶金分析》2015,35(7):79-83
以四硼酸锂-碳酸锂为熔剂,碘化铵做脱模剂,熔融法制备样品,建立了X射线荧光光谱法(XRF)测定钒渣、钒渣熟料、提钒尾渣中二氧化硅、三氧化二铝、氧化钙、氧化镁、氧化锰、五氧化二钒、氧化铬、磷、二氧化钛和全铁的分析方法。试验表明,在试样量为0.25 g、稀释比(m样品m熔剂)为1∶20、脱模剂用量为20 mg时熔样效果最佳。采用经验系数法对基体效应进行校正及谱线重叠干扰校正,测定钒渣样品各组分的相对标准偏差(RSD,n=10)在0.10%~1.9%之间,检出限在35~460 μg/g之间。用标准物质和实际样品验证,测定结果与标准物质认定值和实际样品湿法测定值相符,能够满足日常分析的要求。  相似文献   

13.
称取0.040 0 g试样,将试样置于灼烧过并铺有0.3 g五氧化二钒助熔剂的坩埚内,加入0.2 g锡粒,再覆盖0.15 g五氧化二钒助熔剂和 1.4 g钨粒,以硫酸钾绘制校准曲线,建立了高频燃烧红外吸收法测定铜精矿中硫质量分数为5.00%~40.00%的方法。实验表明,以积分面积为横坐标,硫绝对含量为纵坐标绘制校准曲线。校准曲线的线性方程为Y=37.02X-1.52,线性相关系数R=0.999 8。方法检出限为0.017%。采用实验方法对铜精矿实际样品中硫含量进行测定,所得结果与重量法或燃烧-滴定法基本一致。采用实验方法对铜精矿标准样品进行测定,测定值与认定值基本一致。对铜精矿实际样品和标准样品6次平行测定结果的相对标准偏差(RSD,n=6)为0.41%~0.72%。  相似文献   

14.
通过定性半定量分析软件IQ+测定淀粉、甲基纤维素、硼酸、硬脂酸等常用粘结剂中微量元素含量,选择硼酸和硬脂酸做混合粘结剂,研磨压片法制备样品,用X射线荧光光谱仪(XRF)测定工业硅中铁、铝、钙、锰、镍、钛、铜、磷、镁、铬、钒的元素含量。块状工业硅样品用铁坩埚处理,使用筛网选取1~3 mm的颗粒作为待研磨样品。通过实验确定了最佳的样品和粘结剂比例为15 g工业硅试样加入3.0 g硼酸和0.20 g硬脂酸;条件试验表明,研磨时间达到120 s以后粒度效应明显减弱,在此条件下研磨压制成片后分析面坚固平滑。用工业硅系列标准样品制作校准曲线,并采用经验系数法进行校正;共存元素之间进行谱线重叠校正,由分析软件计算得到校准曲线的均方根偏差(RMS)小于方法要求的RMS值。样品精密度试验表明,工业硅样品中铁、铝、钙、锰、磷、镍、钒、钛、镁测定结果的相对标准偏差(RSD,n=11)一般在5%左右,铬元素的RSD最高,但也在9%以下。实验方法用于工业硅标准样品的分析,测定值与认定值一致;未知样品的检测结果也与电感耦合等离子体原子发射光谱法(ICP-AES)分析结果没有显著性差异。  相似文献   

15.
薛宁 《冶金分析》2021,41(3):62-67
萤石的主要成分为氟化钙,其中不同元素的存在对其产品质量有不同的影响.传统对萤石成分的测定多采用分光光度法、滴定法和原子吸收光谱法,存在分析流程长,不能多元素同时测定等问题.实验采用高氯酸-硝酸溶解样品,待高氯酸冒烟完毕,用盐酸50%(V/V)溶解盐类,通过选择合适的分析谱线,避免了待测元素间的光谱干扰.研究了溶样方法、...  相似文献   

16.
冯宗平 《冶金分析》1982,39(11):57-62
准确、快速地测定铁矿中各种杂质元素含量,对铁矿石质量判定具有重要意义。试验采用“酸溶-碱熔回渣”的方法消解样品,先用硝酸、盐酸溶解样品,再过滤,滤渣及滤纸灰化后再用碳酸钠-硼酸混合熔剂熔融,溶液中的总固体溶解量(TDS)为2.5mg/mL。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌等16种元素。各待测元素校准曲线的线性相关系数均大于0.999;方法检出限为0.00018%~0.034%。实验方法用于2个铁矿石实际样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌的测定,结果的相对标准偏差(RSD,n=8)为0.40%~9.8%;按照实验方法测定4个铁矿石标准样品,测定值与认定值相吻合;测定4个铁矿石生产样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌,测定值与GB/T 6730系列标准方法测定值相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号