首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
样品经硫酸-氢氟酸电热板敞开消解后用硝酸提取定容,采用电感耦合等离子体发射光谱法同时测定矿石中锂、铷、铯的含量。通过实验确定了样品消解过程中加入硫酸的量,并在校准溶液中加入相应的硫酸进行基体匹配;本法与国家标准方法同时分析锂矿石标准物质样品相比,测定结果两者具有很高的一致性。方法检出限锂为0.1mg/kg、铷为6mg/kg、铯为12mg/kg,测定范围锂为0.3mg/kg~1%、铷为20mg/kg~1%、铯为40mg/kg~1%。各组分精密度(RD)范围在0.67%~1.56%之间,正确度(RE)范围在0.43%~5.41%之间,均满足预期要求。  相似文献   

2.
硅藻土是一种重要的非金属矿产,其主次组分的测定一般采用重量法、滴定法等,操作过程繁琐、化学试剂用量大、分析周期长。实验采用熔融法制样,X射线荧光光谱法(XRF)同时测定硅藻土中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2等主次组分。选择高纯试剂人工合成校准样品系列,用测定烧失量后的样品制备玻璃熔片,克服了缺少硅藻土标准物质及烧失量对测定结果的影响。样品与四硼酸锂-偏硼酸锂-氟化锂混合熔剂(质量比为4.5∶1∶0.4)的稀释比为1∶10,LiBr溶液作为脱模剂,在1050℃熔融9min制备熔融片。各组分校准曲线的线性相关系数在0.9962~0.9999之间;方法检出限在18~266μg/g之间。按照实验方法测定硅藻土样品中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2,测定结果的相对标准偏差(RSD,n=8)在0.25%~1.4%之间。所建方法应用于相近标准物质(GBW03103软质粘土和GBW03114硅质砂岩)和4种不同品位的硅藻土样品中各组分的测定,测定结果与标准物质认定值或实际样品湿法测定值基本一致。  相似文献   

3.
“国外锂铷铯冶金”一书是我国近年所发表的有关国外锂、铷、銫冶金全面情况的仅有专著。本书共分8章,(1)锂、铷、銫的资源及技术经济情况,(2)从锂矿石生产锂盐(3)  相似文献   

4.
透辉石是一种新型的陶瓷工业矿产资源,其氧化钙、氧化镁和二氧化硅等主量成分的测定一般采用滴定法、重量法等化学分析法,操作步骤繁琐、化学试剂用量大、分析周期长。实验采用熔融法制样,以X射线荧光光谱法(XRF)测定透辉石中CaO、MgO和SiO2等主量组分。选择与透辉石化学组成相似的硅灰石、滑石、超基性岩和石英岩等国家标准物质,并通过不同标准物质间的混合复配制备与测定样品浓度和梯度相匹配的校准样品序列。样品与四硼酸锂-偏硼酸锂-氟化锂混合熔剂(m∶m∶m=4.5∶1∶0.4)的稀释比为1∶20,加入LiBr溶液和饱和LiNO3溶液分别作为脱模剂和氧化剂,在1050℃熔融9min制备熔融片。各组分校准曲线的相关系数均大于0.999;方法检出限为35μg/g(CaO)、320μg/g(MgO)和130μg/g(SiO2)。选取1个透辉石样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)在0.19%~0.45%之间。所建方法应用于多种不同类型透辉石实际样品的测定,结果与多家实验室其他化学分析方法的测定结果基本一致。  相似文献   

5.
实验采用熔融法制样,以X射线荧光光谱法(XRF)实现了菱镁矿中MgO、Al2O3、SiO2、P2O5、CaO、TiO2、MnO、Fe2O3主次量组分的测定。选择白云岩、水镁石和石灰石国家一级标准物质及人工合成校准样品绘制校准曲线解决了高含量MgO和低含量CaO的测定问题。先测量样品灼烧减量,用灼烧后的样品进行熔片,以消去灼烧减量的含量与X射线荧光强度建立校准曲线,并进行基体校正,测出未知样灼烧后的含量后,再换算为样品实际含量。灼烧后样品与熔剂Li2B4O7的稀释比为1∶10,加入1滴LiBr溶液(1.0 g/mL)作为脱模剂,在1 050 ℃熔融9 min制备熔片。各组分校准曲线的相关系数在0.997 6~0.999 9之间;方法检出限在10~320 μg/g之间。对一菱镁矿实际样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)在0.25%~3.6%之间。所建方法应用于菱镁矿标准物质和实际样品的测定,结果与标准物质认定值或实际样品湿法值基本一致。  相似文献   

6.
为综合利用锂云母资源,提高铯、铷、钾的分离效果,北京有色金属研究总院和江西分宜有色金属冶炼厂开展了叔BAMBP从提钾母液中分离铷、铯的工艺研究。 叔BAMBP从锂云母——石灰法提钾母液中萃取分离铷、铯新工艺,流程短,工序少;金属回收率高(铯>98%,铷>94%);原  相似文献   

7.
锂云母硫酸盐法提取锂铷铯的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用硫酸盐法综合回收锂云母中的锂、铷、铯。结果表明,以硫酸钾、硫酸钙、硫酸钡作为混合盐,锂云母与混合硫酸盐质量比为1∶0.45,在900℃焙烧1h后稀酸浸出,锂、铷、铯浸出率分别为92.2%、61.5%、63.8%。浸出液经净化除杂后,浓缩沉锂,可获得零级碳酸锂,沉锂母液可用于铷、铯回收。  相似文献   

8.
铝矾土中各组分的准确测定对指导实际炼钢生产具有很重要的作用。实验以35.3%(质量分数)四硼酸锂-64.7%(质量分数)偏硼酸锂为混合熔剂,以碘化铵溶液为脱模剂,在铂-金坩埚中熔融制备成玻璃样片,通过理论系数法和经验系数法进行吸收/增强校正,建立了X射线荧光光谱法(XRF)测定铝矾土中二氧化硅、氧化铝和三氧化二铁的方法。对样品与熔剂的稀释比、熔融温度、脱模剂种类及其用量进行了优化,结果表明:控制样品与熔剂的稀释比为1∶10,以13~15滴300g/L碘化铵溶液为脱模剂,在1080℃熔融16min,制得的玻璃片均匀、透明、无气泡,符合测定要求。为保证校准曲线中二氧化硅、氧化铝、三氧化二铁这3种组分具有足够宽的含量范围和适当的含量梯度,选用矾土标准样品YSS066-2013、YSS067-2013、YSS068-2013以及由这3种标准样品按照一定质量比例混合配制成的人工合成校准样品绘制校准曲线,结果表明,各待测组分校准曲线的线性相关系数均大于0.998。二氧化硅、氧化铝和三氧化二铁的检出限分别为0.004%、0.015%和0.0026%。将实验方法应用于铝矾土实际样品中二氧化硅、氧化铝和三氧化二铁的测定,结果的相对标准偏差(RSD,n=12)在0.41%~1.2%之间。采用实验方法分别对2个铝矾土实际样品和3个由矾土标准样品YSS066-2013、YSS067-2013、YSS068-2013按照一定质量比例混合配制成的人工合成样品进行测定,测得结果与滴定法或理论值基本一致。  相似文献   

9.
<正>2019年3月9日,由江西合纵锂业科技有限公司、中南大学、江西旭锂矿业有限公司和宜春钽铌矿有限公司共同承担的《锂云母资源高效利用制备电池级碳酸锂与钾铷铯综合利用关键技术及产业化》项目,获有色行业科技进步奖。由中国工程院院士张文海等7位国内知名有色金属冶金、材料领域专家组成的专家组一致认为,该项目整体技术达到国际领先水平。采用该技术已建成5 000 t/a电池级碳酸锂及钾铷铯综合利用生产示范线,项目技术成果应用近  相似文献   

10.
对含有丰富的锂、钾、铷、铯等有价元素的锂云母矿用石灰烧结法或氯化焙烧法提取锂盐以后,钾、铷、铯均在母液中富集,综合回收铷铯,不仅可进一步降低锂盐生产成本,而且为促进铷、铯在国民经济中的广泛应用创造了有利的条件。 国外生产铷铯盐类,大多数采用复盐沉淀法,如氯锡酸法、亚铁氰化锌法等。这类方法一般流程复杂冗长,分离效果差,产品纯度不高,收率低,生产成本高。近年来,也有采用离子交换法如AMP离子交换与斜  相似文献   

11.
选用铁矿石试样与混合熔剂(四硼酸锂-偏硼酸锂-溴化锂)、稀释比为1∶12、1 000 ℃熔融25 min制备熔片,应用X射线荧光光谱法(XRF)测试铁矿石中全铁、二氧化硅、三氧化二铝、氧化钙、氧化镁、氧化锰、二氧化钛、磷、硫、氧化钾、氧化钠、五氧化二钒、铬、镍、铜、锌、砷、铅、氧化钡等19种组分。通过标准物质、光谱纯物质、人工合成样品及化学定值样品制作校准曲线并进行分段回归。添加氧化钴作内标校正元素铁,应用康普顿散射线校正铜、锌、砷、铅,采用经验系数法校正其他14种组分,可有效克服测定各类铁矿石中各组分时基体效应的影响。对铁矿石样品进行精密度试验考察,各组分测定结果的相对标准偏差(RSD,n=11)在0.13%~7.7%之间;对标准样品及未知样品进行准确度考察,测定值与认定值或湿法值一致。  相似文献   

12.
张敏  李小莉 《冶金分析》2016,36(3):54-58
通过使用能量色散X射线荧光光谱仪对钼矿含量进行分析,建立了快速测定钼矿选矿过程中的尾矿、原矿和钼粗精矿样品中Mo、Pb、Cu、Fe、S、K等6种元素的分析方法。由于钼矿石标准样品较少,因此实验选用钼矿选矿中不同阶段具有一定含量梯度的多个经湿法准确定值后的实际样品作为校准样品绘制校准曲线,同时采用经验系数法及散射线内标法来校正元素之间的影响,从而降低了基体效应和谱线重叠的干扰。各组分校准曲线的相关系数为0.999 3~1.000 0,各元素的检出限在3~10 μg/g之间。对钼矿样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=9)在0.22%~3.7%之间;对钼矿样品进行正确度考察,测定值与湿法值一致。  相似文献   

13.
采用6.000 0 g四硼酸锂熔剂挂壁打底铂金坩锅,0.600 0 g试样、1.500 0 g硝酸钠、1.500 0 g过氧化钡混合后放入熔剂挂壁打底坩埚内,加50 mg 碘化铵为脱模剂,在750 ℃预氧化35 min,然后在1 100 ℃下熔融15 min,避免对铂金坩埚产生腐蚀,获得均匀的玻璃片。采用铝质耐火材料标准样品、碳化硅标准样品和纯试剂合成系列含碳化硅铝质耐火材料的校准样品,实现了X射线荧光光谱法(XRF)测定含碳化硅铝质耐火材料中氧化铝、总硅、氧化钾、氧化铁、氧化锰、氧化镁、氧化钙、二氧化钛、五氧化二磷等9组分。对含碳化硅的铝质耐火材料样品进行精密度考察,发现主含量组分氧化铝(w(Al2O3)=55.20%)和全硅(w(TSi)=22.50%)的相对标准偏差(RSD,n=11)为0.20%、0.23%,其他组分的RSD在0.27%~13.3%之间。采用实验方法对以标准样品和纯试剂配制的含碳化硅铝质耐火材料合成标准样品和含碳化硅铝质耐火材料实际样品进行分析,并与合成标准样品的理论值及实际样品的湿法分析值进行比对,结果显示了较好的一致性。  相似文献   

14.
针对铜精矿熔融制样时硫含量高带来的问题,实验以四硼酸锂-偏硼酸锂(m∶m=12∶22)为熔剂,碳酸钠、二氧化硅和硝酸锂为助剂,建立了同时测定铜精矿中铜、硫、铁、锌、铝、镁、钙、铅和锰等主次成分含量的熔融制样-波长色散X射线荧光光谱法。通过研究不同氧化剂、助剂配方,熔融温度和时间对固硫和制片效率的影响,选定称量0.1g样品,6.9g四硼酸锂-偏硼酸锂混合熔剂(m∶m=12∶22),1.06g碳酸钠,0.38g二氧化硅,1.38g硝酸锂的熔剂配比和熔融介质条件,从室温升至600℃预氧化15min后,在960℃熔融5~8min制得玻璃熔片,经重量法和X射线荧光光谱法检测,硫回收率达到99%以上。采用有证标准物质和高纯度氧化铜混合配制出合适含量梯度的校准样品,经测量计算后校准曲线线性关系良好,线性相关系数(R2)达到0.999;通过标准物质验证及方法间比对,结果表明实验方法测定值与认定值相对偏差在0.43%~6.9%,对同一样品的检测结果与传统方法基本一致,可以满足铜精矿的快速检测要求。  相似文献   

15.
研究了铝对火焰原子吸收法测定矿石中铷的干扰效应及消除方法。实验结果表明,矿石中铝对原子吸收法测定铷存在干扰,铝含量越高干扰越严重。探讨了铝对铷的干扰机理,比较了在试液中分别加入释放剂、络合剂,用含与样品溶液相同量铝的标准溶液制作校准曲线和以(NH42CO3沉淀分离几种消除铝干扰方法的效果。表明以(NH42CO3沉淀分离试液中的铝、铁、钙、镁等元素的方法,操作简单,测定结果准确,适用于矿石中铷的测定。用本文拟定的方法测定矿石中铷,相对标准偏差≤4.6%,加标回收率在97.8%~101.4%之间,标样的测定值与认定值相符。。  相似文献   

16.
熔融制样-X射线荧光光谱法(XRF)被应用到很多种类矿物样品中的主次组分的测试,但地矿实验室需要测试的矿物种类较多,单一的矿物种类测试很难满足测试需求。实验采用熔融制样法,以多种矿物标样及其混合标样为基础,建立了一种可用于多种类型矿物主要组分的X射线荧光光谱分析方法。实验确定熔融条件为样品量0.400 0 g,助熔剂为7.000 0 g四硼酸锂,加入4滴150 g/L溴化锂溶液为脱模剂,0.500 0 g硝酸锂氧化剂和0.400 0 g氟化锂流化剂。结果表明样品基体效应对测试结果影响不大。精密度考察发现:铝矿中主成分Al2O3、铁矿中主成分Fe、钙矿中主成分CaO、镁矿中主成分MgO、锰矿中主成分Mn的相对标准偏差(RSD,n=6)分别为0.49%、0.37%、0.64%、0.38%、0.85%。正确度考察发现:5种矿物样品中SiO2、Al2O3、Ca、MgO、Mn、Fe的测定值与其他方法测定值相吻合。方法采用一套标准样品可测试多种矿物样品中主要组分,适用于地矿实验室矿物样品分析。  相似文献   

17.
红土镍矿焙砂、烟尘及电炉渣等镍铁冶炼过程物料经氧化预处理后熔融制样,采用铁矿石、转炉渣标准样品与自制的红土镍矿标样组合建立X射线荧光光谱(XRF)分析校准曲线,实现了镍铁冶炼过程物料中Ni、Fe、SiO2、MgO、CaO、P2O5、Al2O3、Cr2O3、MnO、Co等10种组分的快速准确测定。试验发现,样品粒度为200目(74 μm),900 ℃温度下空气氧化45 min后,各还原性组分的质量分数均较低,在此氧化条件下经氧化灼烧的红土镍矿焙砂、烟尘及电炉渣样品中金属单质及残碳质量分数均可降至0.1%以下,达到了使用铂黄合金坩埚对样品制备熔融片的要求。选择偏硼酸锂和四硼酸锂混合熔剂、稀释比为10、在1 050 ℃熔融15 min,熔融效果较好。采用理论α系数进行基体校正,各测定组分校准曲线的线性相关系数达到0.999以上。采用红土镍矿及其焙砂、烟尘和电炉渣样品进行分析,精密度实验结果表明,各组分测定值的相对标准偏差(RSD, n=9)小于5%。测定结果根据灼烧减量校正计算后得出样品中各组分含量,结果与化学法测定值基本一致。  相似文献   

18.
钽铁和铌铁矿中钽和铌含量直接关系到矿物资源的品位,铀和钍由于具有放射性,其含量也受到重点关注,但现有检测方法过程复杂,耗时较长。采用四硼酸锂和偏硼酸锂等质量比组成的混合熔剂,选择1∶20超低稀释比,以硝酸钡为氧化剂,采用高纯氧化物熔融制备人工参考样品,以铪和钼元素分别作为钽和铌的内标元素,铀和钍测定时不用内标,建立了波长色散X射线荧光光谱法(WDXRF)测定钽铁和铌铁矿中钽、铌、铀和钍含量的分析方法。结果表明,钽、铌、铀和钍各元素氧化物的检出限分别达到0.016%、0.006%、0.003%和0.004%,对应氧化物参考样品校准曲线线性范围较宽,相关系数分别达到0.999 9、0.999 9、0.999 1、0.999 3。选用实验方法测定钽铁和铌铁矿样品进行精密度试验,各元素对应氧化物测定结果的相对标准偏差(RSD,n=10)如下:五氧化二钽为0.062%~0.38%,五氧化二铌为0.046%~0.18%,八氧化三铀为0.26%~0.52%,二氧化铪为0.27%~1.1%。分别采用实验方法和电感耦合等离子体原子发射光谱法对钽铁和铌铁矿样品进行测定以进行方法比对,结果表明,两种方法测定结果基本一致。  相似文献   

19.
渣铁成分复杂,含铁量较高,其中的铁、钙、镁具有回收价值,但硅、铝、磷对渣铁回收有一定的影响,这些元素含量是渣铁回收利用的重要参数。实验利用熔融制样-X射线荧光光谱法(XRF)测定渣铁中全铁、氧化硅、氧化钙、氧化镁、氧化铝和磷含量,解决了传统方法检测渣铁中这些组分耗时长、步骤多、污染环境等问题,提高了检测效率。渣铁样品预先经过1000℃高温灼烧1h,除去其中水分、碳及易挥发成分,氧化其中还原性物质;然后以四硼酸锂作为熔剂,按稀释比1∶10与灼烧后被测样品混合,先800℃预熔融2min,然后于1150℃熔融12min,将样品制成均匀的玻璃融片。选用13种不同质量分数与渣铁成分类似的标准物质绘制校准曲线,仪器参数经过优化后,建立了X射线荧光光谱法快速检测渣铁中全铁、氧化硅、氧化钙、氧化镁、氧化铝、磷的方法。方法对平炉渣YSBC13838-96、转炉渣QD12-183、钒渣YSBC19809-2000标准样品的准确度试验结果表明:全铁、氧化硅、氧化钙、氧化镁、氧化铝、磷测定结果的相对标准偏差(RSD,n=7)为0.22%~4.2%;测定值与认定值一致。渣铁实际样品的测定值与国家标准方法检测值吻合,满足实验室日常质量监控要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号