首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
实验采用氢氟酸分离含钛冶金物料中硅,硼酸碳酸钠混合熔剂熔融的方法分解试样,解决了磷元素测定由于基体多样导致的酸溶消解难,碱熔过滤沉淀速度慢的问题,同时避免了磷元素被沉淀物吸附的损失问题,分离硅使得硫酸浸出速度快且有效地防止了钛的水解,选择高锰酸钾为氧化剂保证氧化完全。优化实验条件后,磷的检测的范围在0.005%~0.5%,方法的相对标准偏差小于8%,回收率在90%~110%之间,结果令人满意。  相似文献   

2.
采用传统的化学湿法测定钛铁中主次元素含量时操作繁琐,分析时间长且不易掌握。为开拓X射线荧光光谱仪测定钛铁的应用,实验采用硫酸(1+10)溶解试样,低温加热蒸干、冒硫酸烟、高温加热预氧化技术,解决了钛铁合金高温熔融时单质合金元素易与铂形成低温共熔体而损坏铂黄坩埚的难题,并对硫酸浓度及用量、试样溶解条件、稀释比及熔融温度和时间对检测结果的影响进行了研究,得出了使用10 mL硫酸(1+10)溶解试样、加热冒尽硫酸烟、以1∶40的稀释比在1 100 ℃温度下熔融15 min的最佳试验条件,并以此条件建立了熔融制样-X射线荧光光谱法测定钛铁中钛、磷、硅、锰、铝的校准曲线,校准曲线的线性相关系数均大于0.993。选用钛铁样品平行制备12个玻璃样片,以进行精密度考察,5种元素测定结果的相对标准偏差(RSD,n=12)在0.15%~5.0%范围内。采用实验方法测定钛铁标准样品中钛、磷、硅、锰、铝,测定值与认定值基本一致。对于钛铁样品,实验方法与国家或行业标准方法检测结果相符,能满足钛铁合金的日常检测需求。  相似文献   

3.
使用化学湿法测定磷铁中各元素含量时,用酸溶解样品,不加氢氟酸样品溶解不完全,而加入氢氟酸会使样品中硅生成气态四氟化硅,因此要同时测定磷铁中锰、钛、硅和磷,必须使用碱熔解样品。实验用氢氧化钠和过氧化钠熔解磷铁样品,硝酸浸取后用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷铁中锰、钛、硅和磷。采用基体匹配的方法绘制校准曲线,各元素校准曲线的线性相关系数均为0.99998;选择各元素分析谱线分别为Mn 257.610nm、Ti 334.941nm、Si 288.158nm和P 178.222nm;方法中各元素的定量限分别为:锰0.015%(质量分数,下同),钛0.015%,硅0.023%,磷0.13%。按照实验方法测定两个磷铁标准样品和两个磷铁样品,测定结果的相对标准偏差(RSD,n=11)为0.29%~4.2%;分别按照实验方法和其他方法(其中火焰原子吸收光谱法(AAS)测定锰、X射线荧光光谱法(XRF)测定钛、磷以及硅钼蓝分光光度法测定硅)测定磷铁中锰、钛、硅和磷,结果相吻合。  相似文献   

4.
使用化学湿法测定磷铁中各元素含量时,用酸溶解样品,不加氢氟酸样品溶解不完全,而加入氢氟酸会使样品中硅生成气态四氟化硅,因此要同时测定磷铁中锰、钛、硅和磷,必须使用碱熔解样品。实验用氢氧化钠和过氧化钠熔解磷铁样品,硝酸浸取后用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷铁中锰、钛、硅和磷。采用基体匹配的方法绘制校准曲线,各元素校准曲线的线性相关系数均为0.99998;选择各元素分析谱线分别为Mn 257.610nm、Ti 334.941nm、Si 288.158nm和P 178.222nm;方法中各元素的定量限分别为:锰0.015%(质量分数,下同),钛0.015%,硅0.023%,磷0.13%。按照实验方法测定两个磷铁标准样品和两个磷铁样品,测定结果的相对标准偏差(RSD,n=11)为0.29%~4.2%;分别按照实验方法和其他方法(其中火焰原子吸收光谱法(AAS)测定锰、X射线荧光光谱法(XRF)测定钛、磷以及硅钼蓝分光光度法测定硅)测定磷铁中锰、钛、硅和磷,结果相吻合。  相似文献   

5.
锰铁中锰和磷的分步测定   总被引:1,自引:0,他引:1       下载免费PDF全文
锰铁中锰和磷的含量是锰铁分级的主要指标,以往锰铁中锰和磷的含量测定,需要分别采用三价锰滴定法和钼蓝分光光度法,测定过程繁琐,冗长。实验采用一次取样,硝酸-氢氟酸-高氯酸溶解试样,加入过氧化氢将二氧化锰还原为锰(II)的方式制备母液,分别用EDTA滴定法测定锰铁中锰含量,磷铋钼蓝分光光度法测定锰铁中磷含量,建立了对锰铁中锰和磷的分步测定方法。对测定锰的条件进行了优化,结果表明,通过加入三乙醇胺-酒石酸钾钠溶液可掩蔽试液中的铁、铜、铝、钛;采用锰铁标准物质进行试验,结果表明,以甲基百里香酚蓝为指示剂时,测定结果和认定值相吻合,且终点变色是从蓝色变为浅红色,更易观察;加入30mL无水乙醇、25mL 80℃左右的热水可解决指示剂僵化的问题。对磷含量测定中砷和残余硅的干扰消除方法进行了探讨,结果表明,砷的干扰可以通过加入硫代硫酸钠-亚硫酸钠溶液消除,残余硅的干扰可以通过加入酒石酸钾钠溶液消除。按照实验方法测定锰铁试样中锰和磷,锰测定结果的相对标准偏差(n=8)小于0.30%,磷测定结果的相对标准偏差(n=8)小于4.0%。方法应用于锰铁标准物质中锰和磷的测定,锰测定结果的相对误差绝对值小于0.25%,磷测定结果的相对误差绝对值小于4.0%。  相似文献   

6.
采用氢氟酸-硝酸溶解样品,高氯酸冒烟驱除硅、氟,加入抗坏血酸、显色溶液后直接显色测定,建立了磷钼蓝分光光度法测定工业硅中0.001%~0.27%磷含量的分析方法。结果表明,溶液中磷质量浓度在0.05~1.40 μg/mL范围内符合比尔定律;方法中磷的检出限为0.000 46 μg/mL;表观摩尔吸光系数ε825=2.75×104 L·mol-1·cm-1;样品中其他共存离子不干扰测定。不同实验室应用实验方法测定3个工业硅行业标准样品中磷的结果均与认定值吻合;按照实验方法测定2个工业硅行业标准样品中磷的结果与国标方法GB/T 14819.4-2012和GB/T 14819.5-2012的测定值均基本一致。将实验方法用于工业硅行业标准样品和工业硅实际样品中0.001%~0.27%磷的测定,实验所得结果的相对标准偏差(RSD,n=22)为1.4%~4.5%。
  相似文献   

7.
周礼仙 《冶金分析》2018,38(9):75-80
采用无水碳酸钠和硼酸混合熔剂分解样品,在硝酸介质中,高锰酸钾将其他形式的磷酸根氧化为正磷酸根,以亚硝酸钠还原过量的高锰酸钾。在约0.80mol/L的酸度下,磷与钼酸铵、钒酸铵反应生成可溶性的磷钒钼黄络合物,实现了磷钒钼黄分光光度法对样品中磷的测定。在选定的实验条件下,显色液中磷的质量在0.023~0.278mg范围内符合比尔定律,校准曲线的相关系数为0.9998。方法检出限为0.20%(质量分数),测定下限为0.60%(质量分数)。考察了钒磷铁矿样品中钒、铬及其他共存元素对测定的干扰,结果表明这些共存元素的干扰均可忽略。选取6件钒磷铁矿样品,分别采用实验方法与国标方法GB/T 1871.1—1995(包括磷钼酸喹啉重量法和滴定法)作对照分析,二者测定结果基本一致。采用实验方法对钒磷铁矿样品进行8次平行测定,相对标准偏差(RSD,n=8)小于4%,在样品中加入磷标准溶液进行加标回收试验,回收率在98%~101%之间。  相似文献   

8.
以往铁矿石中磷和二氧化硅含量的测定需要分别采用钼蓝分光光度法。在使用磷钼蓝分光光度法时,常会因钒、砷等的干扰使得磷测定结果不准确,需要将样品再处理后才能测定。实验采用石墨垫底铁坩埚,碳酸钠和硼酸混合熔剂高温熔融铁矿石,使铁矿石样品分解彻底,再分别采用铋磷钼蓝和硅钼蓝分光光度法测定磷和二氧化硅含量,从而实现了采用钼蓝分光光度法联合测定铁矿石中磷和二氧化硅。干扰试验表明,在高温熔融时,石墨可将钒(V)还原为钒(III),使样品中钒不干扰磷的测定;显色液中加入15mg硫代硫酸钠溶液可将砷(V)还原为砷(III),继而消除砷对磷测定的干扰。磷的质量浓度在0~3μg/mL范围内遵守比尔定律,校准曲线的线性相关系数为0.9999,表观摩尔吸光系数为2.242×104 L·mol-1·cm-1;二氧化硅的质量浓度在0~5μg/mL范围内遵守比尔定律,校准曲线的线性相关系数为0.9995,表观摩尔吸光系数为9.342×103 L·mol-1·cm-1。方法中磷和二氧化硅的检出限分别为0.0026μg/mL和0.0081μg/mL。按照实验方法测定6个铁矿石标准样品中磷和二氧化硅,磷测定结果的相对标准偏差(n=8)小于5%,相对误差小于2%;二氧化硅测定结果的相对标准偏差(n=8)小于2%,相对误差小于1.5%。按照实验方法测定5个铁矿石样品中磷和二氧化硅,磷测定结果的相对标准偏差(RSD,n=8)小于7%,二氧化硅测定结果的相对标准偏差(n=8)小于1%;磷和二氧化硅的测定值均与电感耦合等离子体原子发射光谱法的测定值相一致。  相似文献   

9.
研究了难溶复杂物料中磷的测定,先在该物料中加入盐酸和硝酸,使大部分的钙镁铁等进入溶液,以铁为载体,用六次甲基四胺做沉淀剂,使磷与钙镁分离后,沉淀及酸不溶物再用氢氧化钠熔融,以钒钼酸铵为显色剂,在5%~8%(v/v)的硝酸溶液中,磷酸根离子与钒钼酸铵生成黄色络合物,于波长420nm处进行光度法测定磷。本法相对标准偏差(n=6)为1.20%~4.20%之间,测定值与标样所给数值相符。  相似文献   

10.
采用硫酸高铁铵滴定法测定钛时,铬的存在会干扰测定。莫桑比克某重砂矿选冶流程样品中含有铬,在采用硫酸高铁铵滴定法测定钛时,需先分离铬。实验以过氧化钠碱熔处理样品,而后将冷却后的坩埚放入盛有100~150mL水的300mL烧杯中,将烧杯置于高温电炉上煮沸5~8min以溶解熔融物并除尽过氧化氢,此时钛以氢氧化钛形式存在于沉淀中,铬以铬酸根形式存在于溶液中。经过滤分离后,铬存在于滤液中,后续以苯代邻氨基苯甲酸为指示剂,采用硫酸亚铁铵滴定法进行测定;钛存在于滤纸上的沉淀中,先依次用热盐酸(1+1)和水洗入锥形瓶中,而后以硫氰酸钾为指示剂,采用硫酸高铁铵滴定法进行测定。对铬干扰钛测定的机理进行了研究和讨论,分析认为可能是因为在钛的测定过程中生成了二价铬,从而消耗了硫酸高铁铵标准溶液进而影响了对钛的测定。将实验方法用于标准样品及1组焙烧磁选后的精矿(6-6-1精)和尾矿(6-6-1尾)中二氧化钛和三氧化二铬的测定,二氧化钛测定值与认定值相符,相对标准偏差(RSD,n=7)为0.082%~0.81%;三氧化二铬测定值与认定值及无过滤分离步骤的硫酸亚铁铵滴定法测定值均相符,相对标准偏差(n=7)为0.25%~1.79%。  相似文献   

11.
酸溶-氟硅酸钾滴定法测定铅锌矿中二氧化硅   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了酸分解铅锌矿试样,氟硅酸钾滴定法测定试样中二氧化硅的方法。铅锌矿样品依次用硝酸、盐酸消解后,在加入氢氟酸的情况下,二氧化硅与氢氟酸反应形成氟硅酸,并在硝酸介质中与过量硝酸钾反应生成氟硅酸钾沉淀,经过滤、洗涤后溶于沸水中,以硝氮黄为指示剂,采用氢氧化钠标准溶液滴定水解后生成的氢氟酸,从而间接测定了铅锌矿中二氧化硅的含量。实验表明:以10 mL硝酸为沉淀介质,3.0 g硝酸钾为沉淀剂,沉淀放置20 min后过滤沉淀并用50 g/L硝酸钾-50%乙醇溶液洗涤沉淀,可有效消除铅锌矿中大量铅的干扰;选择硝氮黄为指示剂,滴定终点颜色突变更明显。方法应用于铅锌矿标准样品中二氧化硅的测定,结果与认定值相符;应用于铅锌矿实际样品测定,结果的相对标准偏差(RSD,n=12)分别为0.5%和1.3%。与传统的重量法进行对比试验,结果一致。方法适用于测定铅锌矿中质量分数为8%~67%的二氧化硅。  相似文献   

12.
硅钼蓝分光光度法测定高岭土中二氧化硅   总被引:1,自引:0,他引:1       下载免费PDF全文
洪达峰 《冶金分析》2017,37(10):59-64
高岭土样品较难分解,在采用硅钼蓝分光光度法对其中二氧化硅进行测定时,存在硅酸在酸性溶液中易聚合,硅钼黄的稳定性较差等问题。实验采用先加入少许乙醇润湿样品,再加入氢氧化钠-过氧化钠混合熔剂进行熔融的方法,实现了对高岭土样品的分解。将样品熔融分解后,选用体积较大的容器以盐酸逆酸化法以避免硅的聚合,在0.10~0.20mol/L盐酸体系中,采用先加入5mL无水乙醇,再加入钼酸铵溶液的方法提高了硅钼黄的稳定性,随后加入草酸-硫酸混合酸以消除磷、砷的干扰,用硫酸亚铁铵将硅钼黄还原成硅钼蓝,于波长660nm处测定,建立了硅钼蓝分光光度法测定高岭土中二氧化硅含量的方法。结果表明,显色液中二氧化硅质量浓度在1.00~10.00μg/mL范围内符合比尔定律,相关系数为1.000,方法中二氧化硅的检出限为0.033μg/mL。对高岭土中的主要组分三氧化二铝及杂质组分三氧化二铁、二氧化钛、氧化钙、氧化镁、氧化钾、氧化钠、砷、磷等进行了干扰试验,结果表明,这些组分均不干扰测定。实验方法用于2个高岭土标准物质中二氧化硅的测定,测定值与认定值基本相符,结果的相对标准偏差(RSD,n=6)分别为0.29%和0.36%。按照实验方法测定6个高岭土实际样品中的二氧化硅,测定值与采用国家标准方法 GB/T 14563—2008中二次盐酸脱水重量法的测定结果基本一致。  相似文献   

13.
硅钼蓝分光光度法测定氟化稀土中二氧化硅   总被引:1,自引:0,他引:1       下载免费PDF全文
氟化稀土是一种用途广泛的材料,其中二氧化硅的含量是衡量产品品质的一个关键指标,直接影响生产合金的工艺和产品的质量。实验采用碳酸钠-硼酸混合熔剂(m碳酸钠:m硼酸=4:1)熔融试样,经盐酸酸化,加入0.4 mL硫酸(1+5)控制显色体系的pH≈1,正硅酸与钼酸铵沸水浴保温时间为3~5 s时形成硅钼杂多酸,用草酸-硫酸混合酸破坏磷、砷等干扰元素,抗坏血酸还原硅钼杂多酸为硅钼蓝,建立了光度法测定氟化稀土中二氧化硅含量的方法。试验表明,显色液中二氧化硅质量浓度在0.04~2.0 μg/mL范围内符合比尔定律,方法中二氧化硅的检出限和测定下限分别为0.002 8%和0.010%(质量分数)。方法用于3个氟化稀土实际样品中二氧化硅量的测定,结果的相对标准偏差(RSD,n=10)为2.3%~5.2%;测定值与电感耦合等离子体原子发射光谱法(ICP-AES)的测定结果一致。  相似文献   

14.
周礼仙 《冶金分析》2018,38(6):70-74
应用硫酸亚铁铵滴定法测定钛铝钒合金中钒时,存在试样较难溶解且试样中较高含量钛易水解干扰终点颜色判断的问题。实验采用硝酸-氢氟酸-硫酸体系溶解试样,通过加入氢氧化钠使其与基体钛发生反应生成三钛酸钠沉淀的方法实现了钛与钒的分离,于硫-磷混酸介质中,用高锰酸钾将滤液中的钒全部氧化为五价钒,以亚硝酸钠还原过量的高锰酸钾,再用尿素分解多余的亚硝酸钠,以N-苯代邻氨基苯甲酸为指示剂,用硫酸亚铁铵标准溶液滴定钒,建立了硫酸亚铁铵滴定法测定钛铝钒合金中钒的方法。共存元素干扰试验说明试样中的共存元素不干扰测定。将实验方法应用于测定两个钛铝钒合金试样中的钒(质量分数在3%~6%之间),结果的相对标准偏差(RSD,n=6)为0.20%和0.25%。按照实验方法测定6个钛铝钒合金试样中钒,结果与火焰原子吸收光谱法(FAAS)测定值相一致。  相似文献   

15.
针对钛白粉样品中钛基体对电感耦合等离子体原子发射光谱法(ICP-AES)测定痕量铜和钒有干扰,提出了利用磷酸氢二铵[(NH4)2HPO4]沉淀分离钛基体后ICP-AES测定钛白粉产品中痕量铜和钒的方法。对溶样方式、(NH4)2HPO4沉淀钛的条件和ICP-AES的测定条件进行研究,结果表明:对于0.1 g钛白粉样品,在H2SO4和(NH4)2SO4介质中,用沸水浴加热3~5 min,可使钛与(NH4)2HPO4形成的Ti(HPO4)2沉淀完全,在实验确定的仪器工作条件下以Cu 324.7 mm和V 292.4 nm进行测定,结果稳定。铜和钒的检出限分别为 0.001 μg/mL和0.000 7 μg/mL。应用实验方法对钛白粉实际样品中铜和钒进行测定,相对标准偏差(RSD,n=6)不大于1.2%,加标回收率在90%~117%之间。方法可以用于钛白粉的日常分析。  相似文献   

16.
准确、快速地测定碳化钒中Fe、P、Ti等杂质元素含量,对碳化钒产品质量判定意义重大。试验采用酸溶后碱熔回渣方法溶解样品,即先用王水溶解样品,再过滤,滤渣及滤纸经灰化后再用混合熔剂(碳酸钠-硼酸)熔融。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定Fe、P、Ti。方法中Fe、P和Ti校准曲线的线性相关系数均大于0.999,方法检出限分别为0.00036%、0.00082%和0.0012%。实验方法用于3个碳化钒实际样品中Fe、P、Ti的测定,结果的相对标准偏差(RSD,n=7)小于0.90%,加标回收率为96%~103%,测定值与其他方法(Fe采用GB/T 20255.2—2006火焰原子吸收光谱法、P采用YB/T 4566.6—2016铋磷钼蓝分光光度法、Ti采用GB/T 20255.3—2006火焰原子吸收光谱法)测定值相吻合。有效解决了碳化钒中低含量Fe、P、Ti的同时测定问题,可用于碳化钒中0.015%~0.113%Fe、0.016%~0.046%P、0.015%~0.088%Ti的测定。  相似文献   

17.
准确、快速地测定碳化钒中Fe、P、Ti等杂质元素含量,对碳化钒产品质量判定意义重大。试验采用酸溶后碱熔回渣方法溶解样品,即先用王水溶解样品,再过滤,滤渣及滤纸经灰化后再用混合熔剂(碳酸钠-硼酸)熔融。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定Fe、P、Ti。方法中Fe、P和Ti校准曲线的线性相关系数均大于0.999,方法检出限分别为0.00036%、0.00082%和0.0012%。实验方法用于3个碳化钒实际样品中Fe、P、Ti的测定,结果的相对标准偏差(RSD,n=7)小于0.90%,加标回收率为96%~103%,测定值与其他方法(Fe采用GB/T 20255.2—2006火焰原子吸收光谱法、P采用YB/T 4566.6—2016铋磷钼蓝分光光度法、Ti采用GB/T 20255.3—2006火焰原子吸收光谱法)测定值相吻合。有效解决了碳化钒中低含量Fe、P、Ti的同时测定问题,可用于碳化钒中0.015%~0.113%Fe、0.016%~0.046%P、0.015%~0.088%Ti的测定。  相似文献   

18.
用过氧化钠-氢氧化钠混合熔剂在750℃的马弗炉中将钒钛磁铁矿试样熔融,再用沸热的三乙醇胺(1+9)浸取熔块,使铁、钛、铝与三乙醇胺络合进入溶液,钒也以含氧酸盐形式进入溶液,向溶液中加入3 mL 10 g/L氯化镁溶液生成氢氧化镁沉淀,溶液中痕量钪则与氢氧化镁共沉淀从而与基体溶液中其他元素分离.过滤沉淀后,采用沸热的盐酸...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号