首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
测定过磷酸钙中氟含量,对过磷酸钙生产及质量控制有指导意义。实验将样品充分干燥后粉碎至粒度小于74μm,采用硼酸镶边,在压力35 t条件下保压30 s,制成样片,选择F-Kα线为分析线,建立了粉末压片-波长色散X射线荧光光谱法(WDXRF)测定过磷酸钙中氟的方法。采用X射线衍射(XRD)对大量过磷酸钙样品进行扫描,结果发现,过磷酸钙中物相组成主要是硫酸钙、氟化钙、二氧化硅,故实验选择以离子选择电极法定值的过磷酸钙样品为基体,加入不同质量的氟化钙后用三维混样仪混匀,配制得到一组氟含量呈一定梯度且能覆盖样品中氟含量范围的系列校准样品用于绘制校准曲线,以使校准样品系列和过磷酸钙样品中氟的谱峰角度始终保持一致,且减少了基体效应、矿物效应等对测定的影响;选取3个不同氟含量的校准样品,用三维混样仪混匀5 min后按照实验方法平行测量5次,氟荧光强度测定结果的相对标准偏差(RSD,n=5)小于3.0%,表明校准样品均匀性满足实验要求。以氟含量为横坐标,对应的氟荧光强度为纵坐标绘制校准曲线,其线性相关系数为0.999 6,方法检出限为3 mg/kg。采用实验方法对3个不同氟含量的过磷酸钙样品中氟进行测定...  相似文献   

2.
土壤和水系沉积物中S、Cl含量采用高频燃烧-红外吸收光谱法、离子色谱法等方法测定时,耗时相对较长;采用粉末压片法制样,波长色散X射线荧光光谱法(WD-XRF)测定时,同一样片Cl元素只能测定1次,造成标准物质大量浪费,且S元素因受粒度效应影响测试难度较大。实验选用粒度48 μm样品,在压力30 MPa、保压30 s条件下制备的样片能有效改善粒度效应对X射线荧光强度的影响;将水系沉积物和土壤标准物质研磨至粒度48 μm建立校准曲线;同时采用经验系数法进行基体效应校正,通过校正MoLα对SKα的谱线干扰,MoLγ1对ClKα的谱线干扰,以及减少样片放置时间、优先测量Cl元素等操作,可保证WD-XRF测量S、Cl的准确度。试验发现测试完毕后的标准样品重新研磨压片或超过半年的长期放置后,Cl首次测量值基本恢复认定值,解决了Cl元素只能测定1次,标准物质大量浪费的问题。试验比对了WD-XRF、红外碳硫分析仪和元素分析仪的准确度,结果表明3种方法测定值基本相符;WD-XRF中S、Cl检出限分别为30 μg/g和18 μg/g,对数偏差(ΔlgC)为0.003~0.054,相对标准偏差(RSD,n=12)为0.7%~8.7%,符合DZ/T 0258—2014《多目标区域地球化学调查规范(1∶250 000)》要求。方法适用于日常大批量分析测试。  相似文献   

3.
土壤和水系沉积物中S、Cl含量采用高频燃烧-红外吸收光谱法、离子色谱法等方法测定时,耗时相对较长;采用粉末压片法制样,波长色散X射线荧光光谱法(WD-XRF)测定时,同一样片Cl元素只能测定1次,造成标准物质大量浪费,且S元素因受粒度效应影响测试难度较大。实验选用粒度48 μm样品,在压力30 MPa、保压30 s条件下制备的样片能有效改善粒度效应对X射线荧光强度的影响;将水系沉积物和土壤标准物质研磨至粒度48 μm建立校准曲线;同时采用经验系数法进行基体效应校正,通过校正MoLα对SKα的谱线干扰,MoLγ1对ClKα的谱线干扰,以及减少样片放置时间、优先测量Cl元素等操作,可保证WD-XRF测量S、Cl的准确度。试验发现测试完毕后的标准样品重新研磨压片或超过半年的长期放置后,Cl首次测量值基本恢复认定值,解决了Cl元素只能测定1次,标准物质大量浪费的问题。试验比对了WD-XRF、红外碳硫分析仪和元素分析仪的准确度,结果表明3种方法测定值基本相符;WD-XRF中S、Cl检出限分别为30 μg/g和18 μg/g,对数偏差(ΔlgC)为0.003~0.054,相对标准偏差(RSD,n=12)为0.7%~8.7%,符合DZ/T 0258—2014《多目标区域地球化学调查规范(1∶250 000)》要求。方法适用于日常大批量分析测试。  相似文献   

4.
直接还原铁中的Si、Al、P、Mg、Ca和S等杂质元素对钢的质量有重要影响,目前一般采用化学湿法分析和熔融制样-X射线荧光光谱法检测,程序相对繁琐。为缩短检测周期,研究采用粉末压片制样-X射线荧光光谱法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,通过试验确定将淀粉作为粘结剂,在7.000 0 g样品中加入0.350 0 g淀粉,研磨120 s混匀并使其粒度小于0.074 mm,于30 t压力下压制成片。选取与待测试样组成、结构及粒度相似的具有一定梯度含量的直接还原铁标准样品/校准样品建立校准曲线,SiO2、Al2O3、P、MgO、CaO和S校准曲线的线性相关系数分别为0.999、0.998、0.992、0.995、0.997和0.999。按照实验方法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,结果的相对标准偏差(RSD,n=11)分别为0.014%、0.030%、0.076%、0.009%、0.026%和0.047%;分别采用实验方法与国家标准方法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,结果相一致。方法满足进口直接还原铁样品的快速检测要求。  相似文献   

5.
直接还原铁中的Si、Al、P、Mg、Ca和S等杂质元素对钢的质量有重要影响,目前一般采用化学湿法分析和熔融制样-X射线荧光光谱法检测,程序相对繁琐。为缩短检测周期,研究采用粉末压片制样-X射线荧光光谱法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,通过试验确定将淀粉作为粘结剂,在7.000 0 g样品中加入0.350 0 g淀粉,研磨120 s混匀并使其粒度小于0.074 mm,于30 t压力下压制成片。选取与待测试样组成、结构及粒度相似的具有一定梯度含量的直接还原铁标准样品/校准样品建立校准曲线,SiO2、Al2O3、P、MgO、CaO和S校准曲线的线性相关系数分别为0.999、0.998、0.992、0.995、0.997和0.999。按照实验方法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,结果的相对标准偏差(RSD,n=11)分别为0.014%、0.030%、0.076%、0.009%、0.026%和0.047%;分别采用实验方法与国家标准方法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,结果相一致。方法满足进口直接还原铁样品的快速检测要求。  相似文献   

6.
本文采用粉末压片法制样,建立了测定钼原矿中钼、铅、铜、铁、硫元素的波长色散X射线荧光光谱法。讨论了制样条件,运用基本参数法和基体校正法相结合,用以校正共存元素间的吸收—增强效应和谱线重叠影响。精密度试验和比对试验表明,该法分析结果能够满足生产需要。  相似文献   

7.
采用粉末直接压片制样,波长色散X射线荧光光谱法(WD-XRF)同时测定土壤及水系沉积物样品中的Br、Cl、F、P和S时,5种待测元素受矿物、化学态和粒度效应影响,测试难度较大.实验选择水系沉积物和土壤标准物质建立校准曲线,Br采用经验系数法和Rh Kα康普顿散射内标法校正基体效应和谱线干扰,F采用经验系数法和F背景内标...  相似文献   

8.
波长色散X射线荧光光谱法测定氧化钼中主次成分   总被引:3,自引:0,他引:3       下载免费PDF全文
采用粉末压片法制取试样,波长色散X射线荧光光谱法测定氧化钼中的Mo、Pb、Cu、Fe、Si O2、CaO、K等7种成分。对仪器参数、基体干扰、曲线拟合进行了研究,试验了各成分的通道类型、晶体类型、探测器类型、管压、管流等分析条件后确定了最佳分析参数。选择了与试样基体相匹配的定值样品建立校准曲线,采取经验系数法对基体效应进行校正。对于主次量组分,相对标准偏差低于1%(n=11)。方法用于实际样品的分析,其荧光分析值与湿法分析值相符。方法能够很好满足氧化钼的主次成分分析。  相似文献   

9.
试样用高密度聚乙烯干粉镶边衬底压片,波长色散X 射线荧光光谱法测定钼矿石中Mo 及其伴生元素W、Sn、Cu、Pb、Zn、Bi的含量。根据我国钼矿品位的特点,选择国家标样与某一大型钼矿样品相结合的办法建立校准曲线,钼测量范围为0.03%~1.51%,采取经验系数法对基体效应进行校正。选一试样11 次压片测定,各成分结果的相对标准偏差<1%,用该方法测定某一大型钼矿样品,其结果与其他单位湿法结果对比,具有良好的一致性,主量及伴生元素结果与标样认定值比对结果理想。  相似文献   

10.
钽铁和铌铁矿中钽和铌含量直接关系到矿物资源的品位,铀和钍由于具有放射性,其含量也受到重点关注,但现有检测方法过程复杂,耗时较长。采用四硼酸锂和偏硼酸锂等质量比组成的混合熔剂,选择1∶20超低稀释比,以硝酸钡为氧化剂,采用高纯氧化物熔融制备人工参考样品,以铪和钼元素分别作为钽和铌的内标元素,铀和钍测定时不用内标,建立了波长色散X射线荧光光谱法(WDXRF)测定钽铁和铌铁矿中钽、铌、铀和钍含量的分析方法。结果表明,钽、铌、铀和钍各元素氧化物的检出限分别达到0.016%、0.006%、0.003%和0.004%,对应氧化物参考样品校准曲线线性范围较宽,相关系数分别达到0.999 9、0.999 9、0.999 1、0.999 3。选用实验方法测定钽铁和铌铁矿样品进行精密度试验,各元素对应氧化物测定结果的相对标准偏差(RSD,n=10)如下:五氧化二钽为0.062%~0.38%,五氧化二铌为0.046%~0.18%,八氧化三铀为0.26%~0.52%,二氧化铪为0.27%~1.1%。分别采用实验方法和电感耦合等离子体原子发射光谱法对钽铁和铌铁矿样品进行测定以进行方法比对,结果表明,两种方法测定结果基本一致。  相似文献   

11.
高钛渣中TiO2、SiO2、CaO、MnO、MgO、TFe含量采用滴定法、光度法等分析方法测定时,耗时相对较长,化学试剂使用量多,工作量大,开发一种简便、快速、多元素同时分析、准确度高的检测方法十分必要.实验采用粉末压片制样,以能量色散X射线荧光光谱法(EDXRF)测定高钛渣中TiO2、SiO2、CaO、MnO、MgO...  相似文献   

12.
炉渣中的氟、钾、钠、硫可以用于润滑,防止钢水与壁黏连,也可以用来调节熔点以及判定缺陷来源。实验利用转炉渣、高炉渣、电炉渣的标准样品和准确定值的炉渣生产试样绘制校准曲线,从而建立了粉末压片制样-X射线荧光光谱法(XRF)测定炉渣中氟、钾、钠、硫的分析方法。通过试验确定制样条件为:试样研磨过200目(74 μm)筛,压片机的压力为20 MPa,保压时间为30 s。按照实验方法,对1个炉渣试样压片11次测量,各元素测定结果的相对标准偏差(RSD)为0.17%~3.4%;正确度验证结果表明,实验方法的检测结果与其他分析方法(高频燃烧红外吸收法、电感耦合等离子体原子发射光谱法以及离子选择电位法)的检测结果一致,可以满足炉前分析量大、分析速度快的要求。  相似文献   

13.
粗铜吹炼炉渣组分的检测没有相应的国家或行业标准可以借鉴,为此实验采用粉末压片法制样,建立了X射线荧光光谱法(XRF)测定粗铜吹炼炉渣组分的方法。通过试验确定分析条件为:磨样时间60s,粒度180目(84μm);压样压力25t;保压时间25s;工作电压电流60kV、50mA。为克服Pb、Sb、Bi组分的校准曲线线性差的问题,利用理论α系数和经验系数法进行了校正,各组分校准曲线的均方根偏差(RMS)和品质因子(K)均满足要求。对同一闪速粗铜吹炼炉渣压制7个压片以进行精密度试验,结果表明,对于质量分数不小于1%的常量组分,测定结果的相对标准偏差(RSD)小于2%;质量分数小于1%的微量组分,测定结果的RSD小于10%。对粗铜吹炼炉渣试样进行分析,测定值与其他方法的测定值基本一致,尽管Cu分析结果偏差较大,但仍能满足炉前快速分析的要求。  相似文献   

14.
采用粉末压片制样,使用X射线荧光光谱仪对含铌多金属矿样中的铌进行测定。由于含铌的多金属矿标样极少且含量较低,实验选取钽矿石标准样品、矿区具有代表性的化学法定值多个样品,及其他土壤、岩石、多金属矿物标准样品、矿区定值样品混合配制的校准样品,制成一套铌含量5.9~2 700 μg/g、梯度适当的校准样品系列,绘制的铌校准曲线相关系数为0.998 6。采用经验系数和康普顿散射线内标法校正了基体效应,用Omnian 近似定量软件、化学分析法与岩矿鉴定分析,确定了矿区矿物中主要成分SiO2、Al2O3、CaO、MgO、K2O、Pb、Zn、Cu、Fe、Zr、Mo、Rb、Hf、Th、U、Ti、Ga及稀土的最高允许量。综合考虑样品基体对铌检出限的影响,实验选取8个标准样品计算出检出限的平均值为1.62 μg/g。对岩石标样进行精密度考察,结果的相对标准偏差(RSD,n=12)为2.2%。对标准样品及矿区实际样品进行分析,测定值与认定值、实验室内其他方法的测定值及其他实验室的测定值吻合,满足《地质矿产实验室测试质量管理规范》的要求。  相似文献   

15.
采用能量色散X射线荧光光谱仪替代传统化学湿法分析测定硅铬合金中铬、硅、磷的含量,可实现在减少人力物力、绿色环保的前提下满足生产的需要。实验采用粉末压片法,通过试验确定将40g破碎缩分样品研磨20s制成120目(124μm)化学分析样,然后在25.00g化学分析样中加入0.20g硬脂酸和2.00g微晶纤维素,研磨90s使其粒度不小于200目(74μm以下),在此条件下研磨压制成片后分析面坚固平滑。根据铬、硅、磷3元素的特点,确定光谱仪最佳工作参数,选择低功率一次靶在不加滤光片抽真空的条件下测定硅和磷,用大功率的二次靶模式测定铬。由于硅铬合金标准样品较少,因此实验选取硅铬合金不同生产阶段且含量呈梯度的多个经化学湿法准确定值的样品作为校准样品建立校准曲线。采用经验系数法校正元素间的影响,消除基体效应、粒度效应,降低谱线重叠干扰。精密度试验表明,硅铬合金样品中铬、硅、磷测定结果的相对标准偏差(RSD,n=10)依次为0.002%、0.002%和0.016%;对硅铬合金生产样品进行正确度考察,测定值与化学湿法分析值一致。方法实现了X射线荧光光谱仪对硅铬合金中铬、硅、磷等元素的同时测定,开拓了仪器应用的新领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号