首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
张蕾  陈宁娜  许超 《冶金分析》2022,42(6):51-56
含碳化硅耐火材料已广泛地应用于冶金炉料中,目前对含碳化硅耐火材料测定常采用湿法分析,然而这些方法繁琐耗时,不适合大批量检测要求。实验采用聚酯(PET)薄膜包裹粉末压片法制样,以微晶纤维素为粘结剂,选取与待测试样粒度一致、基体相似、各成分含量有梯度的铝硅系耐火材料标准样品和碳化硅标准样品,按照不同的比例,配制成各组分含量从低到高具有一定梯度含碳化硅铝质耐火材料校准样品,对其拟合校准曲线,建立了X射线荧光光谱法(XRF)同时测定含碳化硅铝质耐火材料中TSi、Fe2O3、Al2O3、CaO、MgO、TiO2、P2O5、K2O含量的快速分析方法。采用PET薄膜包裹压片不仅减少粉尘污染,把对仪器损坏的几率降到了最低,而且可以防止压片暴露在空气中,增加压片保存时间。对含碳化硅铝质耐火材料试样进行了精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)为0.08%~3.7%。采用实验方法对合成含碳化硅铝质耐火材料校准样品(未用于校准曲线绘制)和实际样品进行测定,结果与参考值或国标方法的分析值相吻合。  相似文献   

2.
张瑜  刘伟 《冶金分析》2020,40(4):65-69
目前针对含碳耐火材料的分析方法以化学湿法为主,X射线荧光光谱法(XRF)多适用于普通的耐火材料。实验针对含碳锆铝耐火材料中的氧化锆、氧化铪和氧化铝进行研究,建立了熔融制样-X射线荧光光谱法测定含碳锆铝耐火材料中这3种组分的方法。实验采用硝酸钠和过氧化钠作氧化剂预氧化样品,可消除碳化硅对铂-金坩埚的腐蚀。以四硼酸锂-偏硼酸锂(m∶m=5∶1)混合熔剂熔融,以碘化铵为脱膜剂,试样与熔剂比例为1∶20,在1100℃熔融15min,可制得表面光滑、无气泡、无结晶的均匀玻璃片。实验选择ZrLα、HfLβ和AlKα谱线测定含碳锆铝耐火材料中的氧化锆、氧化铪和氧化铝,曲线回归精度分别为0.162、0.033和0.209;测定结果的相对标准偏差(RSD,n=8)分别为1.7%、4.3%和0.21%;按照实验方法测定含碳锆铝耐火材料样品中氧化锆、氧化铪和氧化铝,与相应国家标准方法比对,结果一致。  相似文献   

3.
称取0.2 g纯铁助熔剂于处理好的坩埚中,加入0.2 g样品,再在上面覆盖1.3 g钨粒、0.2 g锡粒覆盖,设置截止燃烧时间为35 s,建立了三元助熔剂熔融-高频燃烧红外吸收法测定铝钛碳中间合金中碳的方法。实验表明:方法空白平均值w(C)=0.000 8%(n=5),与所测铝钛碳中间合金样品中的碳质量分数范围0.10%~0.30%相比可忽略不计。方法用于铝钛碳中间合金实际样品中碳的测定,结果与管式炉燃烧-碱石棉吸收重量法相符,相对标准偏差(RSD,n=10)为0.54%~0.71%,加标回收率为98%~101%。适用测量碳质量分数的范围为0.10%~0.30%。  相似文献   

4.
采用传统湿法测定铬铁中主次元素含量时操作繁琐、不易掌握;熔融制样-X射线荧光光谱法测定高碳铬铁中铬、硅和磷的含量已有应用。为拓宽X射线荧光光谱(XRF)检测铬铁的应用,采用四硼酸锂熔剂挂壁打底保护铂合金坩埚,以四硼酸锂和碳酸锂做熔剂,用过氧化钡和硝酸钠做氧化剂对样品进行处理,实现了X射线荧光光谱对铬铁中铬、硅、磷、钛的测定。先在高频熔融炉中对样品进行预氧化,经过预氧化处理将样品中的单质元素转化成氧化物,避免高温状态下单质元素与铂形成低温共熔体而腐蚀损坏铂金坩埚,解决了熔融法处理铬铁试样时容易腐蚀坩埚的难点。在最佳实验条件下,采用高碳、中碳、低碳铬铁标准样品和用高纯铁粉和铬铁标样配制的合成标样建立相关校准曲线,铬、硅、磷和钛校准曲线的相关系数均大于0.993。对高碳铬铁标准样品进行精密度考察,4种元素测定结果的相对标准偏差(RSD,n=11)在0.068%~3.9%范围内。对铬铁标准样品进行分析,测定值与认定值相吻合。采用实验方法对铬铁样品中各元素进行测定,所得结果和湿法测得值一致性较好。
  相似文献   

5.
采用四硼酸锂挂壁制备熔剂坩埚,分散剂溶解并分散硅铁合金样品,蒸干过量水分后加混合熔剂[m(Li2B4O7)∶m(LiBO2)=67∶33]熔融制样,用X射线荧光光谱仪对硅铁合金中Si、Fe、Mn、Al、Ca等元素同时进行测定。本法有效避免了硅铁合金熔融过程中铂金坩埚腐蚀问题,且能够制得适合荧光分析硅铁合金玻璃片,实现了快速而准确地分析硅铁合金中主元素和微量元素。采用本方法分析硅铁合金标准样品,测定值与认定值相符,且主次元素相对标准偏差均能满足硅铁合金测定需要。  相似文献   

6.
红外碳硫分析仪测定硅渣中碳化硅   总被引:1,自引:0,他引:1       下载免费PDF全文
出口硅渣中往往混有一定量的碳化硅 ,碳化硅的测定一般用国标方法[1 ] ,分析过程较繁琐。本文利用硅渣中碳化硅和游离碳的不同性质 ,用高频红外碳硫分析仪测定碳化硅。1 实验部分1 1 仪器和试剂HCS 1 40型高频红外碳硫仪 (上海德凯仪器公司 )。碳化硅标准样品 (甘肃出入境检验检疫局研制 ) ;氧气 :体积分数大于 99 95 % ;钨助熔剂 ;铁助熔剂 ;锡助熔剂。1 2 实验方法1 2 1 游离碳的测定 :见文献[1 ] 。1 2 2 总碳的测定 :称取 0 30 0g试样 ,置于预先加入 0 2 g锡粒的瓷坩埚中 ,再依次加入 0 5 g铁屑及 1 5 g钨粒。用高频红…  相似文献   

7.
介绍了高频燃烧-红外吸收法测定FZNCr-60A镍基自熔合金中碳的方法。对助熔剂的种类、加入方式以及用量做了较详细的研究,同时试验了不同的样品称样量和加入顺序,确定了先加0.3g铁助熔剂,然后加0.2g试样,最后加1.5g钨锡助熔剂的最佳的加入顺序。在没有FZNCr-60A镍基自熔合金标准样品的情况下,选择含量接近的LECO501-506钢铁中碳和硫校准样品(w(C)=0.895%±0.007%)以及其他合金标样对仪器进行了校准。将实验确定的方法用于两个含量不同的实际样品中碳的测定,测得结果分别为0.857%和0.816%,相对标准偏差小于0.18%(n=11),加标回收率在99%~101%之间。  相似文献   

8.
闫丽 《冶金分析》2022,42(6):45-50
采用传统化学湿法测定锰铁合金中化学组分需要使用强酸、强碱等化学试剂,耗时长且操作技能不易掌握。为拓展X射线荧光光谱仪(XRF)测定锰铁合金的应用,实验在垫有石墨粉的陶瓷坩埚内,用滤纸包裹定量的样品和锰铁合金氧化剂,于800 ℃马弗炉内进行氧化,氧化后的样品转移至铂-黄坩埚内,以四硼酸锂为熔剂,用高频熔样机制备XRF用玻璃熔片,实现铂-黄坩埚外氧化试样,克服高频熔样机配套铂-黄坩埚容积小、挂壁制备熔剂坩埚等困难,有效解决了锰铁合金样品熔融过程中单质元素与铂形成低温共熔体而损坏铂-黄坩埚的难题。经条件试验,优化后的熔融条件为称样量0.200 0 g,助熔剂用量为5.000 0 g,熔样温度1 050 ℃,熔样时间12 min,进而实现了熔融制样-X射线荧光光谱法对锰铁合金中硅、锰、磷含量的测定。硅、锰、磷校准曲线决定系数不小于0.999 8。实验方法应用于锰铁合金日常检测,硅、锰、磷测定结果的相对标准偏差(RSD, n=10)均小于3%;标准样品的测定值与认定值间误差均可控制在国标化学分析方法允许差范围内。  相似文献   

9.
对含铝铬锆新型耐火材料的化学成分分析,目前行业内没有匹配的标准物质和合适的X射线荧光光谱(XRF)分析方法,而是仍沿用传统湿法,操作相对繁琐且低含量的次成分灵敏度低。实验利用日本产既有标准物质铝锆硅JRRM708、JRRM710、矾土JRRM310作基质,分别加氧化铬、氧化锆基准试剂混配出不同浓度梯度的9个校准样片系列,每个校准样片称样0.2 g,采用m(四硼酸锂)∶m(偏硼酸锂)∶m(氟化锂)=65∶25∶10配比的混合熔剂,1∶30的稀释比,熔融温度1 100 ℃,以200 g/L溴化铵溶液为脱模剂,45 kV-75 mA激发条件,建立了XRF测定含铝铬锆耐火材料中主次成分的方法。主成分相关系数均不小于0.999,次成分的检出限均不大于0.014%。精密度试验表明,除了较低含量氧化硅的相对标准偏差(RSD,n=6)为1.4%外,其他各成分均小于1%;对含铝铬锆耐火材料的常规试样进行分析,实验方法与化学湿法的一致性较好,满足含铝铬锆新型耐火材料对XRF的要求。  相似文献   

10.
X射线荧光光谱法测定钒铁合金中钒铝硅锰   总被引:1,自引:0,他引:1       下载免费PDF全文
姚强  朱宇宏  王琼  路通  王燕 《冶金分析》2016,36(9):62-65
采用铂金坩埚直接熔融钒铁合金,存在腐蚀铂金坩埚的危险。实验采用HNO3(1+1)和H2SO4(1+1)先消解钒铁合金,再用熔融制样法将样品浓缩物在铂金坩埚中与四硼酸锂和碳酸锂进行熔融,熔体在铂金坩埚中成型,避免了试样对铂金钳锅的腐蚀。然后以钒铁合金标准样品建立校准曲线,采用OXSAS软件提供的数学模型对谱线重叠效应进行校正,可实现X射线荧光光谱法(XRF)对钒铁合金中V、Al、Si和Mn元素含量的准确测定。精密度试验表明,待测元素的相对标准偏差均低于0.7%(RSD,n=9),能满足钒铁合金中各元素的检测要求。采用实验方法分析钒铁合金标准样品,测定值与认定值吻合良好。  相似文献   

11.
王娟 《冶金分析》2020,40(6):62-67
为消除硅钙钡合金试样熔融制片时侵蚀铂-黄坩埚的难题,实验中硅钙钡样品以四硼酸锂-碳酸锂(m∶m=2∶1)为预氧化熔剂,在石墨垫底的瓷坩埚中高温熔融成熔球,再将熔球转到铂-黄坩埚中,再用四硼酸锂为熔剂熔融制成玻璃片,这样铂-黄坩埚在熔融制样过程中的腐蚀问题得到了有效解决,实现了熔融制样-X射线荧光光谱法(XRF)对硅钙钡合金中硅、钙、钡、磷、铝的测定。实验确定了最佳制样条件:0.2000g试样、2.0000g四硼酸锂、1.0000g碳酸锂在石墨垫底的瓷坩埚中,500℃灰化完全,900℃熔融15min,取出冷却;移入盛有3.0000g四硼酸锂的铂-黄坩埚中,加0.50mL 300g/L碘化钾脱模剂,在1150℃熔融15min,取出摇匀,再熔融15min,取出摇匀冷却,制得均匀玻璃片。实验方法选用具有适当梯度的硅钙钡合金标样和内控样绘制校准曲线,各待测元素校准曲线的相关系数r≥0.9997。精密度结果表明,各元素测定结果的相对标准偏差(RSD,n=10)在0.11%~5.9%;正确度结果表明,硅钙钡合金标样采用本法分析,其测定值与标准值相吻合。硅钙钡试样采用本法分析,其测定值与行业标准的分析值一致性较好,并进行了成对数据t检验,结果表明本法与行业标准分析方法无显著性差异,能满足日常生产检测要求。  相似文献   

12.
熔融制样-X射线荧光光谱法(XRF)测定硅铁合金样品,需重点解决样品前处理中合金样品侵蚀铂-黄坩埚的难题。硅铁样品以四硼酸锂-碳酸锂预氧化剂在石墨垫底瓷坩埚中高温预氧化熔融后,再将熔融物转移至铂-黄坩埚中,用四硼酸锂熔融制成玻璃熔片,实现了熔融制样-X射线荧光光谱法对硅铁合金中硅、磷、锰、铝、钙、铬的测定。实验讨论了预氧化熔融的熔剂体系及氧化方法、试样与熔剂的稀释比,结果表明,试样与熔剂以1∶35的稀释比,以10滴300g/L碘化钾溶液为脱模剂,在1100℃熔融30min,熔融制得的玻璃片均匀、透明、无气泡,符合测定要求。用具有浓度梯度的系列硅铁有证标准样品制作校准曲线,各待测元素校准曲线的线性相关系数均大于0.9995。方法应用于硅铁合金实际样品中硅、磷、锰、铝、钙、铬的测定, 结果的相对标准偏差(RSD,n=11)在0.1%~5.8%之间;正确度试验表明,硅铁标准样品的测定结果与认定值相符,硅铁实际样品的测定结果与国家标准方法测定值一致,能满足常规分析要求。  相似文献   

13.
万芒  刘伟  曾小平 《冶金分析》2023,43(1):54-61
采用X射线荧光光谱法(XRF)测定稀土硅铁中硅、锰、铝、铁、钛及镧系元素时,熔融制样过程中氧化条件不好控制,容易造成挂壁坩埚过早熔化或坩埚挂壁不好的现象,使铂-金坩埚受到严重侵蚀。实验以四硼酸锂为熔剂铺底保护铂-金坩埚,使用碳酸锂对稀土硅铁样品进行烧结氧化;再采用过氧化钠进行深度氧化,解决了稀土硅铁合金对铂-金坩埚腐蚀的问题。试样和四硼酸锂熔剂的质量比为1∶30,在1 100℃下熔融试样12 min,可制得表面质量良好的玻璃片,有效地消除了试样的粒度效应和矿物效应影响。按照实验方法测定稀土硅铁中硅、锰、铝、钙、铁、钛、镧、铈、镨、钕、钐等11种主次元素,结果的相对标准偏差(RSD,n=10)为0.39%~5.0%,与标准方法及滴定法分析结果吻合较好,能满足稀土硅铁中主次元素的检测需求。  相似文献   

14.
铝矾土中各组分的准确测定对指导实际炼钢生产具有很重要的作用。实验以35.3%(质量分数)四硼酸锂-64.7%(质量分数)偏硼酸锂为混合熔剂,以碘化铵溶液为脱模剂,在铂-金坩埚中熔融制备成玻璃样片,通过理论系数法和经验系数法进行吸收/增强校正,建立了X射线荧光光谱法(XRF)测定铝矾土中二氧化硅、氧化铝和三氧化二铁的方法。对样品与熔剂的稀释比、熔融温度、脱模剂种类及其用量进行了优化,结果表明:控制样品与熔剂的稀释比为1∶10,以13~15滴300g/L碘化铵溶液为脱模剂,在1080℃熔融16min,制得的玻璃片均匀、透明、无气泡,符合测定要求。为保证校准曲线中二氧化硅、氧化铝、三氧化二铁这3种组分具有足够宽的含量范围和适当的含量梯度,选用矾土标准样品YSS066-2013、YSS067-2013、YSS068-2013以及由这3种标准样品按照一定质量比例混合配制成的人工合成校准样品绘制校准曲线,结果表明,各待测组分校准曲线的线性相关系数均大于0.998。二氧化硅、氧化铝和三氧化二铁的检出限分别为0.004%、0.015%和0.0026%。将实验方法应用于铝矾土实际样品中二氧化硅、氧化铝和三氧化二铁的测定,结果的相对标准偏差(RSD,n=12)在0.41%~1.2%之间。采用实验方法分别对2个铝矾土实际样品和3个由矾土标准样品YSS066-2013、YSS067-2013、YSS068-2013按照一定质量比例混合配制成的人工合成样品进行测定,测得结果与滴定法或理论值基本一致。  相似文献   

15.
称取0.2g样品,置于预先盛有(0.300±0.005)g锡粒的坩埚内,覆盖(0.400±0.005)g纯铁和(2.000±0.005)g钨粒进行分析,建立了高频燃烧红外吸收法测定氮化硅铁中碳含量的分析方法。实验中,考虑到氮化硅铁标准样品较少,故选择由0.04g氮化硅标准样品JCRM R008和0.16g纯铁标准样品GBW 01148a混合配制的氮化硅铁合成校准试样(w(C)=0.025 7%)与氮化硅铁标准样品GSB 03-2469-2008(w(C)=0.35%)来绘制校准曲线。方法中碳的线性范围为0.025%~0.35%,检出限为0.000 45%。由0.10g氮化硅标准样品JCRM R008和0.10g纯铁标准样品GBW 01148a混合配制氮化硅铁合成样品1,以及由0.08g氮化硅铁标准样品GSB 03-2469-2008和0.12g氮化硅标准样品JCRM R006混合配制氮化硅铁合成样品2,采用实验方法对其中碳进行测定,测定值与认定值基本一致。采用实验方法对氮化硅铁实际样品中的碳进行测定,所得结果的相对标准偏差(RSD,n=6)为1.2%~1.7%。  相似文献   

16.
熔融制样-X射线荧光光谱法测定钛铁合金中化学成分,核心技术是合金试样氧化技术,以有效避免样品熔融过程中铂-金坩埚受到侵蚀.在石墨垫底的瓷坩埚内以专用助熔剂将钛铁样品氧化成钛铁熔球,以四硼酸锂与碳酸锂混合熔剂熔融制备成玻璃片,建立X射线荧光光谱法(XRF)测定钛铁中钛、硅、锰、磷、铝含量的方法.试验探讨了熔剂选择、助熔剂...  相似文献   

17.
利用三氧化二铝不溶于三氯化铁溶液的特性,用50 mL 50 g/L 三氯化铁溶液浸取铝基复合造渣剂样品中金属铝,使用磁力搅拌器搅拌溶解60 min,经过滤并使用盐酸(2+98)洗涤沉淀,基体匹配法配制校准曲线消除基体效应的影响,采用Al 308.215 nm和Al 396.152 nm作为分析谱线,用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝基复合造渣剂中金属铝。试验考察了样品中共存元素的影响,结果表明,样品中w(CaO、SiO2)≤40%、w(MgO)≤30%、w(MnO)≤15%、w(P2O5、BaO)≤10%、w(V、Mo)≤5%、w(Ti)≤3%、w(Ni、Nb)≤1%、w(Cr、Cu)≤0.2%时,不干扰金属铝的测定。当铝基复合造渣剂样品中金属铝质量分数小于2%时,采用Al 396.152 nm作为分析线,校准曲线线性回归方程为y=275 00 x+669.1,相关系数r=0.999 4;当金属铝质量分数不小于2%时,使用Al 308.215 nm作为分析谱线,校准曲线线性回归方程为y=4 502 x+56.1,相关系数r=0.999 9。方法中金属铝的检出限为0.001%(质量分数)。按照实验方法测定铝基复合造渣剂样品中金属铝,结果的相对标准偏差(RSD,n=8)小于2%,测定值与三氯化铁浸取-氟盐取代EDTA滴定法的测定结果相吻合。  相似文献   

18.
李小青 《冶金分析》2018,38(6):39-42
为了解决锰铁、金属锰等合金试样玻璃熔融制片时侵蚀铂黄坩埚的难题,实验采用四硼酸锂-碳酸锂混合熔剂、五氧化二钒氧化剂在石墨垫底瓷坩埚中高温预氧化熔融,有效避免了熔融制样过程中铂金坩埚腐蚀的问题,建立了X射线荧光光谱法(XRF)测定锰铁、金属锰中锰、硅、磷的分析方法。讨论了预氧化熔融的熔剂体系及氧化方法、试样与熔剂的稀释比,结果表明,试样与四硼酸锂-碳酸锂混合熔剂以1∶45的稀释比、以0.5mL200g/L溴化锂溶液为脱模剂,在1120℃熔融制得的玻璃片均匀、透亮、无气泡,符合测定要求。精密度和正确度试验结果显示,各元素测定结果的相对标准偏差(RSD,n=10)在0.10%~0.96%之间,结果与锰铁标准物质、金属锰内控标样认定值(参考值)相符,完全满足常规分析要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号