首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
李庆美  朱纪夏 《冶金分析》2013,33(10):77-80
对仪器测定参数和分析谱线进行优选,多次试验酸溶硼的分解酸度、基体元素干扰、内标元素,确定了电感耦合等离子体原子发射光谱法测定低合金钢中酸溶硼的方法。研究结果表明应用249.677 nm作为硼的分析谱线,选择硫酸(1+6)溶解样品,加入铍、钪混合标准溶液作双内标,采用基体铁匹配来测定低合金钢中微量的酸溶硼。方法检出限为0.030 μg/mL,相对标准偏差(RSD)小于10%,样品加标回收率为99%~101%。  相似文献   

2.
建立了火焰原子吸收光谱法测定铜烟尘物料中低含量铟的方法。对样品的分解、测定酸介质及其浓度、共存元素对铟的测定干扰等内容进行了研究。研究结果表明,在5%硝酸介质中,于波长303.9 nm处,以火焰原子吸收光谱法测定。将本法用于铜烟尘中铟含量的测定,相对标准偏差(RSD,n=11)和加标回收率分别为0.88%~1.76%和96.0%~103.5%。方法结果准确、精密,操作简便、快速,易于掌握,满足生产对样品分析准确、快速的要求。  相似文献   

3.
铁铬铝合金是非常重要的金属电热元件材料,铝、钛、锆含量对于其电学力学性能有非常重要的影响,因此需要准确测定其含量。采用盐酸-硝酸混合酸(体积比为4∶1)可以快速溶解铁铬铝样品,选择Al 308.215 nm、Ti 308.802 nm、Zr 256.887 nm作为分析谱线,采用基体匹配法消除基体效应影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定铁铬铝合金中铝、钛、锆的方法。铝含量(质量分数,下同)在0.048%~5.0%、钛含量在0.006 0%~0.70%、锆含量在0.042%~0.70%范围内,铝、钛、锆元素校准曲线的相关系数均不小于0.999 9;各元素检出限为0.001 8%~0.014%。按照实验方法测定铁铬铝合金中铝、钛和锆,结果的相对标准偏差(RSD,n=6)为0.52%~1.5%,加标回收率为99%~103%。  相似文献   

4.
使用化学湿法测定磷铁中各元素含量时,用酸溶解样品,不加氢氟酸样品溶解不完全,而加入氢氟酸会使样品中硅生成气态四氟化硅,因此要同时测定磷铁中锰、钛、硅和磷,必须使用碱熔解样品。实验用氢氧化钠和过氧化钠熔解磷铁样品,硝酸浸取后用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷铁中锰、钛、硅和磷。采用基体匹配的方法绘制校准曲线,各元素校准曲线的线性相关系数均为0.99998;选择各元素分析谱线分别为Mn 257.610nm、Ti 334.941nm、Si 288.158nm和P 178.222nm;方法中各元素的定量限分别为:锰0.015%(质量分数,下同),钛0.015%,硅0.023%,磷0.13%。按照实验方法测定两个磷铁标准样品和两个磷铁样品,测定结果的相对标准偏差(RSD,n=11)为0.29%~4.2%;分别按照实验方法和其他方法(其中火焰原子吸收光谱法(AAS)测定锰、X射线荧光光谱法(XRF)测定钛、磷以及硅钼蓝分光光度法测定硅)测定磷铁中锰、钛、硅和磷,结果相吻合。  相似文献   

5.
朱诗文  沈真 《冶金分析》2022,42(5):80-84
钛元素含量作为硅铁的一项指标,对其准确、快速测定十分重要。选择硝酸-氢氟酸-高氯酸酸溶体系溶解样品,通过高氯酸冒烟使硅挥发并去除,并在配制钛标准溶液系列时,通过基体匹配法来消除铁基体效应的影响。选择Ti 334.94 nm为分析谱线,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定硅铁中痕量钛。共存元素的干扰试验结果表明:共存元素钙和锰对钛元素的测定无影响。在优化的工作条件下,建立钛元素的校准曲线,校准曲线的线性相关系数r为0.999 8;方法检出限为0.000 54%(质量分数,下同),定量限为0.001 8%。采用实验方法测定硅铁标准样品和硅铁试样中痕量钛,测定结果的相对标准偏差(RSD,n=11)为1.8%~2.7%;标准样品YSB14614-2008和YSBC28605a-2013的测定值和标准值相符合,硅铁试样中钛(wTi=0.005 7%)的加标回收率为99%~104%。  相似文献   

6.
使用化学湿法测定磷铁中各元素含量时,用酸溶解样品,不加氢氟酸样品溶解不完全,而加入氢氟酸会使样品中硅生成气态四氟化硅,因此要同时测定磷铁中锰、钛、硅和磷,必须使用碱熔解样品。实验用氢氧化钠和过氧化钠熔解磷铁样品,硝酸浸取后用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷铁中锰、钛、硅和磷。采用基体匹配的方法绘制校准曲线,各元素校准曲线的线性相关系数均为0.99998;选择各元素分析谱线分别为Mn 257.610nm、Ti 334.941nm、Si 288.158nm和P 178.222nm;方法中各元素的定量限分别为:锰0.015%(质量分数,下同),钛0.015%,硅0.023%,磷0.13%。按照实验方法测定两个磷铁标准样品和两个磷铁样品,测定结果的相对标准偏差(RSD,n=11)为0.29%~4.2%;分别按照实验方法和其他方法(其中火焰原子吸收光谱法(AAS)测定锰、X射线荧光光谱法(XRF)测定钛、磷以及硅钼蓝分光光度法测定硅)测定磷铁中锰、钛、硅和磷,结果相吻合。  相似文献   

7.
冶炼钛氯化烟尘提取钪的工艺研究   总被引:3,自引:0,他引:3  
本文从冶炼钛的氯化烟尘中提钪,采用酸浸,P204萃取钪,分离铁锰,NaOH反萃。化学精制采用Sc(OH)_3盐酸溶解,TBP一浓盐酸萃取钪,分离RE和Dowex50w—x8交换树脂吸附钪,洗涤伴随元素,实验得到氧化钪的纯度>99.5%,实收率2>56%。  相似文献   

8.
建立了一种用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定钛白废酸萃取相中主要微量元素(钛、铝、钪、铁、钙和镁)方法。试样中大部分溶剂煤油经低温加热已挥发,剩余有机相用硝酸-硫酸混合酸在低温下消解,分解完全后冒三氧化硫白烟赶尽硝酸,冷却后,在选定的仪器工作条件下,以铟作为内标元素,对试液中钛、铝、钪、铁、钙和镁进行ICP-AES测定,共存元素之间基本没有干扰。方法的的检出限(μg/mL)分别为0.001(钛)、 0.016(铝)、0.004(铁)、0.015(钙)、0.002(钪)和0.005(镁)。方法用于钛白废酸萃取相样品中上述6种元素测定,相对标准偏差在0.35%~0.76%之间,加标回收率为97%~102%。  相似文献   

9.
锆钛矿中存在耐高温且硬度高的锆和钛,常规酸溶法难以将其完全分解,碱熔法处理样品时样品易粘埚。采用碳酸钠-硼酸熔融样品,以50 ng/mL185Re为内标,动能歧视碰撞池(KED)模式和干扰系数校正法克服了轻稀土元素氧化物或氢氧化物对重稀土元素的干扰,建立了电感耦合等离子体质谱法(ICP-MS)测定锆钛矿中16种稀土元素(钪、钇、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥)分量及其总量的分析方法。对比了盐酸-硝酸-氢氟酸-高氯酸敞开酸溶、硝酸-氢氟酸密闭酸溶、氢氟酸微波消解、过氧化钠-氢氧化钠熔融、硼砂熔融和碳酸钠-硼酸熔融6种分解方法,结果表明,碳酸钠-硼酸熔剂对样品分解的效果最佳。采用样品稀释法控制基体质量浓度为0.20 mg/mL和内标元素校正法降低基体效应。实验表明:各稀土元素的校准曲线线性相关系数在0.999 1~1.000 0之间,方法检出限为0.000 1~0.008 4 μg/g,定量限为0.000 5~0.042 0 μg/g。采用实验方法测定与锆钛矿成分类似的锆矿石标准样品中16种稀土元素分量及总量,结果与认定值基本一致。将实验方法应用于锆钛矿实际样品的测定,测定结果的相对标准偏差(RSD, n=8)为1.2%~4.0%,加标回收率为94%~110%,符合国家地质矿产行业标准DZ/T 0130—2006第3部分规定的加标回收率允许限90%~110%的范围。  相似文献   

10.
采用硝酸、氢氟酸和高氯酸冒烟溶解样品,选取Nb 322.548nm、V 310.230nm和Zr 319.418nm为分析谱线,采用基体匹配法配制标准溶液系列并绘制校准曲线消除基体效应的影响;使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铌、钒和锆,从而建立低碳低钛硅铁中铌、钒和锆的测定方法。共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰影响。各待测元素校准曲线的线性相关系数均大于0.9995;各元素的检出限分别为0.0006%,0.0005%和0.0005%。实验方法应用于低碳低钛硅实际样品中铌、钒、锆的测定,结果的相对标准偏差(RSD,n=10)为1.2%~4.7%,回收率为98%~104%。按实验方法测定低碳低钛硅铁样品中铌、钒、锆,测定结果与YB/T 4395—2014、GB/T 223.14—2000和GB/T 223.30—1994测定值相符。  相似文献   

11.
钒钛磁铁矿中因含量较低而不能被有效利用的Sc,在采用熔盐氯化法提取Ti时被富集于熔盐废渣中,为配合回收熔盐废渣中宝贵的Sc、Ti资源,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定熔盐废渣中0.001%~0.5% Sc和0.25%~5.0%Ti的方法。采用HF、H2SO4溶解熔盐废渣,实验优化了其配比、用量和反应条件,确保样品被快速溶解完全,并且通过SiF4挥发逸出、CaSO4沉淀分离等方式尽量除去SiO2、CaO等高含量基体组分,以及采用形成TiOSO4络合物离子的方式解决高浓度Ti4+在低酸度介质下易水解的问题,从而减少样品测试溶液的酸度及其共存组分构成,有效降低基体效应等影响;重点试验了试液中共存组分的光谱干扰、连续背景叠加、基体效应等干扰因素的影响,通过优选待测元素的分析谱线及其检测积分和背景校正区域以及光谱仪工作参数等,并且采用同步背景校正法消除共存基体组分的影响。校准曲线中Sc线性范围为0.001%~0.5%,线性相关系数为0.999 6;Ti的线性范围为0.25%~5.0%,线性相关系数为0.999 2;方法检出限为0.000 01%Sc和0.000 38%Ti;元素的含量水平为0.01%~0.1%(质量分数)时结果的相对标准偏差(RSD,n=8)小于3%,含量水平为1.0%~5.0%(质量分数)时结果的相对标准偏差(RSD,n=8)小于1%;加标回收率为92%~109%。按照实验方法测定4个氯化提钛熔盐废渣样品,分别与ICP-AES测定稀土矿石中Sc(GB/T 17417.2—2010)和硫酸铁铵滴定法测定铁矿石中Ti(GB/T 6730.23—2006)进行比对,结果相一致。  相似文献   

12.
刘洁 《冶金分析》2015,35(1):77-80
研究了增碳剂样品的溶解、分析谱线的选择、共存元素的干扰和介质的酸度对测定的影响,建立了用电感耦合等离子体原子发射光谱法(ICP-AES)测定增碳剂中钛和钙含量的分析方法。样品在马弗炉中灰化后,采用盐酸、氢氟酸、硝酸和高氯酸溶解得到的灰分。以钛和钙标准溶液配制的标准系列溶液建立校准曲线,选择324.199 nm和317.933 nm 波长的谱线作为钛和钙的分析线,在0.6 mol/L盐酸介质中用ICP-AES进行测定。钛和钙的检出限分别为0.04 μg/mL和0.07 μg/mL,线性范围分别为0~20 μg/mL和0~60 μg/mL。方法用于煤、煤矸石、沥青、石油焦等增碳剂中钛和钙的测定,测定值与标样的认定值一致,回收率在96%~105%之间。  相似文献   

13.
氟化钪是钪生产的主要原料之一,测定氟化钪中铁元素对节约生产资源、保证钪产品品质十分重要.钪作为稀土元素之一,若采用溶解氟化稀土常用的硝酸、高氯酸,则难以溶解完全.实验以硝酸-高氯酸-硫酸(1+1)溶解氟化钪,待测液中硝酸体积分数为10%,采用Fe238.204 nm为分析谱线,利用两点法进行背景校正,建立了电感耦合等离...  相似文献   

14.
采用氢氟酸消解样品,硝酸溶解盐类并驱除氢氟酸,建立了火焰原子吸收光谱法直接测定钛白粉中镉的方法。对溶样条件、酸用量、基体及共存元素的干扰等进行了讨论。结果表明,在选定的实验条件下,二氧化钛基体和钛白粉中各共存元素在最高含量时均不干扰镉的测定。方法线性范围为002~20 μg/mL,检出限为0003 3 μg/mL,测定下限为0011 μg/mL。将本方法应用于实际样品分析,测定结果与电感耦合等离子体质谱法基本一致,相对标准偏差在1%以下(n=11),回收率在98%~103%之间。  相似文献   

15.
建立了用电感耦合等离子体发射光谱法(ICP-AES)同时测定钒铁合金中Si,Mn,P,Al ,Ti,Ni,Cr,Cu,As元素含量的分析方法。提出用酸溶和碱熔相结合的试样预处理方法,克服了酸溶法导致铝、硅的测定结果偏低和碱熔法易堵塞ICP矩管和雾化器的两大弊端。基体钒和铁的干扰采用基体匹配方法消除。在选用的最佳光谱线和合适的工作条件下测定,方法检出限为2~42 μg/L。方法用于测定钒铁标准样品和合成样品,各元素的测定值与认定值或合成值一致,相对标准偏差(n=10)在0.7%~9.8%范围。  相似文献   

16.
采用重铬酸钾滴定法与X射线荧光光谱法(XRF)相结合的方法,测定了钒钛磁铁矿中的全铁,消除了重铬酸钾滴定法测定铁矿石中全铁时常受到的钒和钛的干扰。实验表明:通过溶样时加 25 mL硫磷混酸溶解样品来有效避免钛盐的水解可消除钛的干扰;除钒、钛外,其他干扰元素如铜、砷、钼等含量都非常低,在0.01 %以下,对全铁的测定无干扰;在滴加三氯化钛溶液还原二价铁时,滴加至溶液呈蓝色,即三氯化钛溶液过量1~2滴时,全铁和全部的钒一起被滴定;通过采用XRF测定钒,再将滴定法测得全铁值减去由钒转化的干扰量可计算得到钒钛磁铁矿样品中全铁的含量。采用方法对钒钛磁铁矿实际样品和由钒钛磁铁矿与分析纯五氧化二钒合成的样品进行全铁量的分析,结果与国家标准方法测定值一致,相对标准偏差(RSD,n=9)为0.13%~0.30%。  相似文献   

17.
薛宁 《冶金分析》2021,41(3):62-67
萤石的主要成分为氟化钙,其中不同元素的存在对其产品质量有不同的影响.传统对萤石成分的测定多采用分光光度法、滴定法和原子吸收光谱法,存在分析流程长,不能多元素同时测定等问题.实验采用高氯酸-硝酸溶解样品,待高氯酸冒烟完毕,用盐酸50%(V/V)溶解盐类,通过选择合适的分析谱线,避免了待测元素间的光谱干扰.研究了溶样方法、...  相似文献   

18.
研究了用电感耦合等离子体原子发射光谱(ICP AES)法同时测定钛剂中的铝、钾、铁、钒4个元素的条件并建立了测定方法。用硫酸、盐酸和硝酸溶解样品,选择396.1 nm、766.4 nm、259.9 nm、292.4 nm波长的光谱线分别作为铝、钾、铁、钒的分析线,在选择的最佳条件下测定,基体钛、硫酸和共存元素对测定没有干扰。Al、K、Fe、V的检出限分别为0.003 0 SymbolmA@g/mL,0.001 7 SymbolmA@g/mL, 0.002 4 SymbolmA@g/mL,0.001 4 SymbolmA@g/mL。本法用于实际样品的分析,测定值与滴定法或原子吸收光谱法的测定值一致,测定结果的相对标准偏差(RSD)≤1.5%。本方法能够满足铝工业添加剂——钛剂中杂质元素分析要求。  相似文献   

19.
准确、快速地测定碳化钒中Fe、P、Ti等杂质元素含量,对碳化钒产品质量判定意义重大。试验采用酸溶后碱熔回渣方法溶解样品,即先用王水溶解样品,再过滤,滤渣及滤纸经灰化后再用混合熔剂(碳酸钠-硼酸)熔融。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定Fe、P、Ti。方法中Fe、P和Ti校准曲线的线性相关系数均大于0.999,方法检出限分别为0.00036%、0.00082%和0.0012%。实验方法用于3个碳化钒实际样品中Fe、P、Ti的测定,结果的相对标准偏差(RSD,n=7)小于0.90%,加标回收率为96%~103%,测定值与其他方法(Fe采用GB/T 20255.2—2006火焰原子吸收光谱法、P采用YB/T 4566.6—2016铋磷钼蓝分光光度法、Ti采用GB/T 20255.3—2006火焰原子吸收光谱法)测定值相吻合。有效解决了碳化钒中低含量Fe、P、Ti的同时测定问题,可用于碳化钒中0.015%~0.113%Fe、0.016%~0.046%P、0.015%~0.088%Ti的测定。  相似文献   

20.
准确、快速地测定碳化钒中Fe、P、Ti等杂质元素含量,对碳化钒产品质量判定意义重大。试验采用酸溶后碱熔回渣方法溶解样品,即先用王水溶解样品,再过滤,滤渣及滤纸经灰化后再用混合熔剂(碳酸钠-硼酸)熔融。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定Fe、P、Ti。方法中Fe、P和Ti校准曲线的线性相关系数均大于0.999,方法检出限分别为0.00036%、0.00082%和0.0012%。实验方法用于3个碳化钒实际样品中Fe、P、Ti的测定,结果的相对标准偏差(RSD,n=7)小于0.90%,加标回收率为96%~103%,测定值与其他方法(Fe采用GB/T 20255.2—2006火焰原子吸收光谱法、P采用YB/T 4566.6—2016铋磷钼蓝分光光度法、Ti采用GB/T 20255.3—2006火焰原子吸收光谱法)测定值相吻合。有效解决了碳化钒中低含量Fe、P、Ti的同时测定问题,可用于碳化钒中0.015%~0.113%Fe、0.016%~0.046%P、0.015%~0.088%Ti的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号