共查询到14条相似文献,搜索用时 89 毫秒
1.
银含量的测定在地球化学找矿标志和矿产资源预测等方面有着重要意义。采用王水水浴溶样,磷酸沉淀法分离锆、铌,以107Ag作为测定同位素,103Rh为内标,干扰系数校正法进行校正,建立了电感耦合等离子体质谱法(ICP-MS)测定化探样品中痕量银的分析方法。0.05 mol/L磷酸加入量的优化试验表明,加入5 mL 0.05 mol/L磷酸,可使溶出的锆、铌转化为难溶的磷酸盐化合物,从而实现锆、铌与待测元素银的分离。用与90Zr16O+等质量数的106Pd间接校正91Zr16O+及90Zr16O1H+对107Ag的干扰,与锆的氧化物干扰系数直接校正相比,改善了仪器运行过程中氧化物比值参数变化引起的测定误差。在优化的实验条件下,校准曲线线性相关系数大于0.999,方法检出限为0.006 6 μg/g,定量限为0.022 μg/g。按照实验方法分析了6个水系沉积物,3个岩石及4个土壤等13个标准物质,并根据地质矿产实验室测试质量管理规范DZ/T 0130.4—2006计算测定值与标准值的对数差(ΔlgC),结果表明,实验结果满足地质矿产实验室测试质量管理规范DZ/T 0130.4—2006的要求。选取6个化探样品,分别用实验方法进行测定,并与交流电弧发射光谱法(ES)测定结果做对比,结果表明,实验方法与电弧发射光谱法没有显著性差异,测定结果的相对标准偏差(RSD,n=12)为2.6%~12.4%,满足地质矿产实验室测试质量管理规范DZ/T 0130.4—2006对精密度的要求。实验方法可用于二氧化硅质量分数不大于77%的化探样品中痕量银的分析。 相似文献
2.
采用HF-HNO3体系密闭溶解样品,用HCl-NaBr-甲基异丁基酮(MIBK)体系对Te进行萃取和反萃取,加入乙醇对测定信号强度进行增敏,以125Te作为测定同位素,建立了电感耦合等离子体质谱法(ICP-MS)测定地质样品中痕量Te的方法。对溶样条件进行了优化,确定溶样条件如下:采用7.0mLHF与HNO3体积比为1∶3的混合酸,于160℃控温电热板上溶样3h。增敏试验表明,控制测定液中乙醇的体积分数为4%效果最佳。以待测元素质量浓度为横坐标,以待测元素与内标元素的信号强度之比为纵坐标绘制校准曲线,线性相关系数大于0.9999。方法检出限为0.0054μg/g。采用实验方法对地质标准物质中痕量Te进行测定,测定结果与认定值基本保持一致,相对标准偏差(RSD,n=12)均在6.7%以内。分别用实验方法与氢化物发生原子荧光光谱法(HG-AFS)对土壤样品1#~4#及铅锌矿样品6#~10#中Te进行测定,结果基本一致。 相似文献
3.
4.
5.
采用7mL王水-2mL氢氟酸-2mL高氯酸-5mL硝酸体系对样品进行处理,选用45Sc为内标校正27Al、47Ti、24Mg、39K和43Ca,选用72Ge为内标校正57Fe、53Cr、55Mn和63Cu,选用103Rh校正208Pb和111Cd,建立了电感耦合等离子体质谱法(ICP-MS)测定水泥中氧化铝、二氧化钛、氧化铁、氧化镁、氧化钾、氧化钙、铅、镉、铬、锰、铜等11种组分的方法。实验表明,在样品中加入7mL王水和2mL氢氟酸,置于80℃电加热装置上预处理20min,放入微波消解仪中进行消解,消解后样液中加入2mL高氯酸于160℃进一步消解样品并驱除多余的氢氟酸,再加入5mL硝酸驱除多余的高氯酸,可将样品溶解完全。在选定的实验条件下,各组分相应校准曲线的相关系数均不小于0.9996。按照实验方法对两种水泥标准物质GBW 03204b和GBW 03203b中的11种组分分别进行了8次平行测定,并分别加入铅、镉、铬、锰、铜的单元素标准溶液进行加标回收试验,所有组分测得结果的相对标准偏差(RSD,n=8)在3.7%~6.2%之间,氧化铝、二氧化钛、氧化铁、氧化镁、氧化钾、氧化钙的测定值与认定值基本一致,铅、镉、铬、锰、铜的加标回收率在87%~109%之间。 相似文献
6.
电感耦合等离子体质谱法同时测定化探样品中12种元素 总被引:3,自引:1,他引:3
研究了采用电感耦合等离子质谱仪(ICP-MS)同时测定地质样品中V、Cr、Co、Ni、Cu、Zn、Mo、Ag、Cd、W、Pb、Bi等多种元素的方法。试样用王水、高氯酸、氢氟酸溶解,硝酸定容,以103Rh为内标,采用在线加入方式,ICP-MS测定。实验表明,该方法精密度好,测定结果的相对标准偏差一般在0.02%~2.76%之间,大部分元素RSD1%;准确度好,标准样品测定结果与推荐值有较好的符合性;检出限为0.1ng/mL。该方法操作简单、快速、准确,可应用于批量化探样品多种元素的测定。 相似文献
7.
将样品焙烧后采用蒸汽加热王水消解,用两块聚氨酯泡塑分两次吸附消解后样品溶液中的痕量Au,将两块泡塑合并、灰化,用王水溶解,以Re为内标进行校正,实现了采用电感耦合等离子体质谱法(ICP-MS)对化探样品中痕量Au的测定。对消解条件、吸附条件和脱附条件进行了优化,结果表明:采用蒸汽加热消解所得到的Au测定结果与电热板消解相同,但蒸汽加热消解方法能够明显节约电力能源并能有效降低外来污染;选用化探金标准物质为试验对象,在吸附时间相同的条件下,分两次投入2块泡塑进行吸附,Au的回收率为97%~101%,比一次投入2块泡塑的Au回收率87%~92%更接近100%;采用先在180℃灰化20min,再经50min升温至700℃灰化1h的方法对载Au泡塑进行灰化,化探金标准物质中Au的回收率稳定在100%附近。在选定的实验条件下,校准曲线的线性相关系数为0.9996,方法检出限为0.13ng/g,测定下限为0.43ng/g,测定上限为120ng/g。应用实验方法对3件化探金标准物质、3件土壤样品和3件水系沉积物样品中Au进行了测定,结果表明:化探金标准物质的测定值与认定值相符;Au测定值的相对标准偏差(RSD,n=12)为2.9%~6.4%。按照实验方法对化探金标准物质进行加标回收试验,回收率为98%~104%。 相似文献
8.
将样品焙烧后采用蒸汽加热王水消解,用两块聚氨酯泡塑分两次吸附消解后样品溶液中的痕量Au,将两块泡塑合并、灰化,用王水溶解,以Re为内标进行校正,实现了采用电感耦合等离子体质谱法(ICP-MS)对化探样品中痕量Au的测定。对消解条件、吸附条件和脱附条件进行了优化,结果表明:采用蒸汽加热消解所得到的Au测定结果与电热板消解相同,但蒸汽加热消解方法能够明显节约电力能源并能有效降低外来污染;选用化探金标准物质为试验对象,在吸附时间相同的条件下,分两次投入2块泡塑进行吸附,Au的回收率为97%~101%,比一次投入2块泡塑的Au回收率87%~92%更接近100%;采用先在180℃灰化20min,再经50min升温至700℃灰化1h的方法对载Au泡塑进行灰化,化探金标准物质中Au的回收率稳定在100%附近。在选定的实验条件下,校准曲线的线性相关系数为0.9996,方法检出限为0.13ng/g,测定下限为0.43ng/g,测定上限为120ng/g。应用实验方法对3件化探金标准物质、3件土壤样品和3件水系沉积物样品中Au进行了测定,结果表明:化探金标准物质的测定值与认定值相符;Au测定值的相对标准偏差(RSD,n=12)为2.9%~6.4%。按照实验方法对化探金标准物质进行加标回收试验,回收率为98%~104%。 相似文献
9.
锡铅焊料中的杂质元素对焊点的抗氧化性、润湿性、扩展面积有重要影响,因此对其进行测定意义重大。采用硝酸、氢氟酸溶解样品,选择H2动态反应池模式测定Fe,标准模式测定Al、P、Cu、Zn、As、Cd、Ag、Sb、Au、Bi,同时以Sc校正Al、P、Fe、Cu,以Cs校正Zn、As、Ag、Cd,以Tl校正Sb、Au、Bi,实现了电感耦合等离子体质谱法(ICP-MS)对锡铅焊料中这11种杂质元素含量的测定。在优化的实验条件下,11种杂质元素校准曲线的相关系数均大于0.999,方法的检出限在0.002~0.80μg/g范围内,测定下限在0.007~2.73μg/g范围内。用建立的实验方法测定锡铅焊料样品中Al、P、Fe、Cu、Zn、As、Cd、Ag、Sb、Au、Bi,平行测定11次结果的相对标准偏差(RSD)为0.85%~3.5%,加标回收率为90%~110%。将实验方法应用于锡铅焊料标准物质YT9302中Al、Fe、Cu、Zn、As、Sb、Bi共7种杂质元素的测定,结果与认定值一致。 相似文献
10.
对电感耦合等离子体质谱法(ICP-MS)测定痕量稀土元素的条件进行了优化,并讨论了敞开式混合酸多次分解法、封闭溶样法、碱熔法3种溶样方法对ICP-MS测定铝土矿中稀土元素的影响。结果表明:采用敞开式混合酸多次分解法和碱熔法溶解样品后,均可实现ICP-MS对铝土矿样品中稀土元素的测定;敞开式混合酸多次分解法与ICP-MS相结合测定稀土元素的方法检出限为0.003~0.028 μg/g,较碱熔法0.010~0.066 μg/g低;敞开式混合酸多次分解法与ICP-MS相结合测定稀土元素的相对标准偏差(RSD)为1.1%~2.8%,碱熔法为2.8%~5.6%,这说明敞开式混合酸多次分解法与ICP-MS相结合方法的测定精密度较高。敞开式混合酸多次分解法具有操作简便,对仪器污染小的优点,但对于个别类型铝土矿样品(如一水硬铝石型铝土矿)不能够完全溶解,从而导致ICP-MS对个别铝土矿样品中稀土元素的测定结果偏低;碱熔法能将所有类型铝土矿样品全部溶解,因此碱熔法与ICP-MS相结合可测定所有类型铝土矿样品中的稀土元素,但该法溶样时试剂用量大、流程复杂,易带来大量的基体,会给仪器带来污染。因此采用ICP-MS对铝土矿中稀土元素进行测定时,建议先采用敞开式混合酸多次分解法进行溶样,如果能将样品溶解完全,则直接采用ICP-MS进行测定,如不能,则需要重新采用碱熔法对样品进行处理后再采用ICP-MS进行测定。将混合酸多次分解法和碱熔法2种溶样方法分别与ICP-MS结合应用于铝土矿实际样品中稀土元素的测定,加标回收率分别为92%~110%、90%~103%。 相似文献
11.
采用酸溶法处理地质样品时,无论敞开或密闭体系,硼均会在最后蒸发赶除HF时形成三氟化硼或三氯化硼挥发损失,从而造成硼测定时结果精密度差。为了消除此种挥发损失,实验提出采用1mLHCl、1mLHNO3、2mLHF混合酸,在控温电热板上,于140℃恒温2h以密闭方式消解样品,不需赶除HF,直接定容后采用配置了耐HF进样系统的电感耦合等离子体原子发射光谱仪进行测定,从而建立了地球化学调查样品中硼的测定方法。确定了硼的最佳分析谱线为B249.678nm,采用干扰方程校正计算消除了样品中钴对硼测定结果的影响,当样品中铁与硼的质量比大于14000时,用氨水除铁以消除Fe的干扰。实验表明,硼的质量浓度为0.10~2.00μg/mL时与其发射强度成线性关系,相关系数为0.99993;方法检出限为0.8μg/g。按照实验方法测定土壤、水系沉积物及岩石系列国家标准物质中硼,测定结果的相对标准偏差(RSD,n=12)为3.5%~9.9%,相对误差为-13%~8.4%。 相似文献
12.
由于地质化探样品中金的品位较低,需将金分离富集后再进行测定。实验将样品经650 ℃高温灼烧后以王水(1+1)溶解,加入溴水以确保金全部被氧化为金,采用经20 g/L氢氧化钠-10%丙酮溶液处理过的聚氨酯泡沫塑料吸附金后于700 ℃灼烧灰化,用王水(1+1)溶解灰分,以5.0 ng/mL185Re为内标,实现了电感耦合等离子体质谱法(ICP-MS)对地质化探样品中金的测定。实验表明:用取样器加入1.0 mL饱和溴水进行氧化,控制吸附体积约为100 mL,加入泡沫塑料后振荡吸附35 min,金的吸附率可达到98.9%。金在1~10 μg/mL质量浓度范围内与其对应的信号强度呈线性关系,相关系数为0.999 4,方法检出限为0.12 ng/g。采用实验方法对铂族元素地球化学成分分析标准物质、金矿石标准物质、化探金标准物质中金进行测定,测得结果与认定值的相对误差(RE)小于9%,相对标准偏差(RSD,n=12)小于10%。 相似文献
13.
基于电感耦合等离子体质谱法(ICP-MS)测定稀土元素的优势,在优化仪器工作参数的基础上,探究了敞口混合四酸法(HNO3-HCl-HF-HClO4)、敞口混合五酸法(HNO3-HCl-HF-HClO4-H2SO4)和高压密闭法(HNO3-HCl-HF)3种溶样方法对ICP-MS测定岩石和土壤中稀土元素的影响。结果表明:敞口混合四酸法因样品消解不完全不适宜用于ICP-MS测定岩石和土壤中稀土元素;敞口混合五酸法和高压密闭法均可以实现ICP-MS对岩石和土壤中稀土元素的测定;敞口混合五酸法结合ICP-MS测定稀土元素的方法检出限为0.001~0.035μg/g,相对标准偏差为1.4%~6.4%,相对误差在±9%范围内,加标回收率为92%~110%;高压密闭溶样法的检出限为0.001~0.009μg/g,相对标准偏差为1.0%~9.2%,相对误差在±4%范围内,加标回收率为93%~107%。敞口混合五酸法具有处理流程短的优点,适用于大批量样品处理;高压密闭溶样法具有检出限低,测试精度高及用酸量少等特点,但处理流程长不适用于大批量样品处理。 相似文献
14.
建立测定碲金矿中Te含量的检测方法,对碲金矿床的成因研究及金矿石矿产资源的综合开发利用意义重大。实验采用NaOH-Na2O2碱熔法处理样品,选择125Te+为测定对象,通过选择数学校正方程校正了85Rb40Ar+、109Ag16O+对125Te+的质谱干扰,以10.0ng/mL 103Rh为内标,实现了电感耦合等离子体质谱法(ICP-MS)对碲金矿中Te的测定。对样品处理方法进行了选择,同时对Na2O2的用量进行了优化,确定采用0.1g NaOH-0.6g Na2O2处理样品;探讨了仪器采样深度对Te和Rh信号强度的影响以及对双电荷产率(Ba2+/Ba+)和氧化物产率(CeO+/Ce+)的影响,确定采样深度为150step;考察了测定液中乙醇在0~6%(体积分数,下同)范围内对Te信号强度的影响,结果表明,3%乙醇对质谱信号增强效果显著。实验方法的线性范围为0.020~200μg/g,校准曲线相关系数为0.9999,方法检出限和测定下限分别为0.015μg/g和0.049μg/g。选择碲金矿标准物质GBW07858、GBW07859进行方法验证,所得结果与认定值基本保持一致,相对标准偏差(RSD,n=12)为2.6%~5.9%,回收率为92%~108%。采用实验方法对碲金矿实际样品进行分析,测得结果与氢化物发生-原子荧光光谱法(HG-AFS)基本一致。 相似文献