首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采取9种不同梯度锆量中低合金钢标准样品绘制曲线,建立了测定中低合金钢中锆的直流辉光放电原子发射光谱法。以单因素法考察了直流辉光光谱仪实验参数对测定中低合金钢中锆的影响,确定激发电压为1250V、激发电流为45mA、预燃时间为60s、积分时间为10s。以锆元素光谱强度为横坐标,锆元素质量分数为纵坐标绘制校准曲线,其校准曲线线性相关系数为0.9961,线性范围为0.0044%~0.35%。采用实验方法对中低合金钢标准样品中锆进行测定,测定值与认定值基本一致,相对标准偏差(RSD,n=11)为0.72%~1.7%,测定结果的相对标准偏差都符合仪器推荐测量要求(相对标准偏差小于3%)。将实验方法应用于中低合金钢实际样品分析,测得结果与国标方法GB/T 223.30—1994基本一致。  相似文献   

2.
应用火花源原子发射光谱法测定了白口化生铁样品中主次元素含量,并进一步探讨了取样、样品激发部位对试样白口化及检测结果的影响。通过选用基体元素作内标,对谱线进行基体校正和共存元素校正,建立了标准工作曲线。使用本法测定了白口化生铁样品中的Si、Mn、 P、S、Cu、As、Sn、Ti 8种元素,测定结果与认证值及X射线荧光光谱法测定结果基本一致,分析数据能够满足钢铁企业实验室生产工艺的要求。  相似文献   

3.
采用11种与因瓦合金成分含量相接近的镍基合金标准样品绘制校准曲线,建立了基本不需要样品处理即可对因瓦合金中14种元素(C、Si、Mn、P、S、Ni、Cr、Mo、Cu、Al、Nb、Ti、Co、Fe)同时测定的辉光放电光谱法。确定辉光光谱仪检测因瓦合金的最佳条件:模块电压和相电压分别为8.22 V和3.82 V;功率为70 W;冲洗时间为80 s;积分时间为60 s。以各元素质量分数为横坐标,其对应的光谱强度为纵坐标绘制校准曲线,各元素校准曲线的相关系数均在0.99以上。采用实验方法对因瓦合金实际样品进行分析,结果显示:Cr、Ni、Mo、Ti、Fe的质量分数均大于0.3%,各元素测定值的相对标准偏差(RSD,n=11)均不大于1%;C、Si、Mn、P、S、Cu、Al、Nb、Co的质量分数均小于0.3%,各元素测定值的RSD(n=11)均小于5%。将实验方法应用于对因瓦合金样品中14种元素的测定,测得结果与滴定法测定Ni和Fe、高频燃烧红外吸收法测定C和S、电感耦合等离子体原子发射光谱法测定Si、Mn、P、Cr、Mo、Cu、Al、Nb、Ti和Co元素的结果基本一致。  相似文献   

4.
钴元素含量及其变化直接影响不锈钢材料性能,准确测定不锈钢中钴成分并对其严格控制对保证和提高不锈钢材料性能具有重要意义。通过优化仪器参数,用7块不同钴含量的不锈钢标准物质绘制校准曲线,建立了辉光放电原子发射光谱法(GD-OES)测定不锈钢中宽范围含量钴的方法。考察了仪器参数对钴测定的影响,优化后仪器参数为激发电流45 mA、激发电压1 100 V、预燃时间75 s、积分时间10 s。实验表明,钴在质量分数为0.008%~1.55%范围内与其对应的光谱强度呈良好的线性关系,线性相关系数为0.990 5。方法检出限为1.2μg/g,定量限为4.0μg/g。将实验方法应用于不锈钢标准样品和实际样品中钴含量的测定。结果表明:对于标准样品,测定值与标准值基本一致,测定结果的相对标准偏差(RSD,n=9)为0.71%~1.2%;对于实际样品,钴测定值为1.48%、0.62%、0.128%,与GB/T 223.65—2012中的火焰原子吸收光谱法及GB/T 223.22—1994中的亚硝基R盐光度法基本一致,测定结果的相对标准偏差(RSD,n=9)为1.1%~1.6%。  相似文献   

5.
以线扫描进行激光剥蚀进样,采用激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)定量分析不锈钢中主、次和痕量元素。考察了激光剥蚀池载气及流量、激光脉冲频率、激光剥蚀孔径、激光输出能量密度对分析性能的影响,对激光剥蚀参数进行了优化。以基体57Fe为内标,校正了元素分馏和灵敏度漂移:以湿法分析用不锈钢屑状标准物质通过环氧树脂等固化剂镶嵌成集合式标准物质作为校准样品,建立了校准曲线。结果表明,除P和Pb校准曲线的线性相关系数分别为0.9782和0.9679外,其他各待测元素均达到0.99以上:各元素的检出限为0.02~39.71μg/g。将方法应用于不锈钢标准样品分析,测定值与认定值吻合,除样品BSCA316-4中Al和Pb外,其它各元素测定值的相对标准偏差(RSD,n=5)在10%以内,而Pb元素的含量本身较低,因此其RSD为10.3%也满足要求。  相似文献   

6.
镍电解液的复杂高盐基体对其中微量铜的监测产生干扰。将旋转圆盘电极原子发射光谱(RDE-AES)与标准加入法结合,无需样品前后处理,无基体效应,采用改进后的校准曲线测定镍电解液工艺流程中不同中间液中的微量铜。根据元素蒸发曲线,确定预燃时间6 s、采集时间7~30 s,预燃激发改善了盘电极的润湿性,从而保证进样量的稳定性;合理的曝光时间可以在保证分析元素强度灵敏度的前提下提高分析速度,单次检测时间小于35 s。选用Ni 324.845 7 nm为内标,校正激发行为和进样量误差。方法检出限为0.15 mg/L。按照实验方法测定镍电解液工艺流程中不同中间液中微量铜,结果的相对标准偏差(RSD,n=6)小于12%,加标回收率为98%~110%。  相似文献   

7.
镍电解液的复杂高盐基体对其中微量铜的监测产生干扰。将旋转圆盘电极原子发射光谱(RDE-AES)与标准加入法结合,无需样品前后处理,无基体效应,采用改进后的校准曲线测定镍电解液工艺流程中不同中间液中的微量铜。根据元素蒸发曲线,确定预燃时间6 s、采集时间7~30 s,预燃激发改善了盘电极的润湿性,从而保证进样量的稳定性;合理的曝光时间可以在保证分析元素强度灵敏度的前提下提高分析速度,单次检测时间小于35 s。选用Ni 324.845 7 nm为内标,校正激发行为和进样量误差。方法检出限为0.15 mg/L。按照实验方法测定镍电解液工艺流程中不同中间液中微量铜,结果的相对标准偏差(RSD,n=6)小于12%,加标回收率为98%~110%。  相似文献   

8.
基于交流电弧是依靠固体进样技术而不需要酸溶或碱熔分解样品,操作简便、绿色环保、稳定性好,且摄谱仪能实现数据直读等优点,建立了以交流电弧光电直读发射光谱测定地球化学样品中银、硼、锡等3元素的分析方法。用光谱样品全自动搅拌机混匀样品,1次能混匀30件,提高了分析效率。对实验条件进行了最佳优化,选用一级激发电流3A,起弧3s后升到二级激发电流15A,保持22s,共截取曝光时间为25s;采用锗(Ge)为内标元素,并且银元素与长波锗元素组成分析线对,硼和锡与短波锗元素组成分析线对,灵敏度高;选择基体组分与样品相类似的岩石、土壤、水系沉积物和矿石等14种国家一级地球化学标准物质作为标准系列,建立二次方程拟合校准曲线,避免了基体干扰的影响;采用差值法背景校正,曲线平滑,相关系数好,测定高含量值样品时,差值法背景校正与不扣背景的测定结果可能相差不大,但对于测定低含量值的样品,差值法背景校正结果较好。结果表明:在最佳的实验条件下,各元素测定结果的相对标准偏差(RSD)均小于10%;测定范围较宽,银、硼、锡的检出限分别为0.016、0.63、0.32μg/g;采用国家一级地球化学标准物质验证方法准确度,测定值与认定值吻合,3元素测定平均值与认定值的对数差值的绝对值(ΔlgC)均小于0.05,满足多目标地球化学填图中对于方法准确度的要求。  相似文献   

9.
火花放电原子发射光谱仪分析高含量Si(w(Si)≥3.0%)时,其元素含量已超出了校准曲线的线性范围,导致分析值偏低。实验通过增加中低合金钢、硅钢标准样品,完善并扩展了Si校准曲线,完成了共存元素的干扰校正,拓宽了Si元素的分析范围,质量分数上限由3.14%扩展至4.16%,线性相关系数达0.99965。校准曲线扩展后重新选择标准化样品进行漂移校正,校准曲线强度比由9.41扩展至11.01。对扩展含量段的两个样品(w(Si)≥3.0%)进行精密度考察,结果的相对标准偏差(RSD,n=10)为0.43%和0.50%;对比了8个不同Si含量的样品,发现完善、扩展后校准曲线的Si测定值与认定值更相符;同时统计过程控制(SPC)控制图处于受控状态。可见校准曲线经完善、扩展后可满足工艺过程控制和成品分析要求。  相似文献   

10.
史玉涛  王宝义  刘招 《冶金分析》2017,37(12):55-58
为了满足铍青铜化学成分快速测定需求,开发了利用火花放电发射光谱法直接测定铍青铜中Be、Co、Pb、Fe、Al、Ni、Si 7种元素的方法。用120目(124μm)刚玉砂纸打磨样品表面,优化光源激发条件为:冲洗时间10s;预燃时间15s;积分时间10s;频率500Hz;预燃能量0.5;积分能量0.09;氩气流量9L/min;以Cu 296.1nm谱线作为参比线,优选各元素的线性和精密度均较好的谱线作为该元素的分析谱线。利用购买的标样与电感耦合等离子体原子发射光谱法(ICP-AES)和原子吸收光谱法(AAS)共同定值的内控样一起绘制校准曲线,各元素校准曲线线性相关系数R~2均在0.995以上。对样品进行精密度试验考察,各元素测定结果的相对标准偏差(RSD,n=11)在0.39%~1.5%之间。对铍青铜未知样品进行正确度考察,测定值与湿法结果一致。  相似文献   

11.
应用直流辉光放电发射光谱仪,实现生铁、铸铁、不锈钢、中低合金钢材料中硼含量的共线法测定。实验选择磨床进行试样制备,采用单因素轮换法优化激发参数。以铁元素为基体元素来消除不同材质的基体效应,并进行钼元素的光谱干扰校正。实验优化分析参数为放电电压1 200 V,放电电流50 mA,预溅射时间50 s,积分时间10 s,钼元素光谱干扰校正系数为-0.007 9。硼含量分析范围0.000 6%~0.080%,测量结果与认定值一致,相对标准偏差不大于3%。  相似文献   

12.
建立了利用电感耦合等离子体原子发射光谱法(ICP-AES法)同时测定稀土镁铸铁中常量及痕量共12种元素(Si,Mn,P,Cu,Mo,V,Ti,Sn,Sb,Mg,La,Ce)的分析方法。研究了稀土镁铸铁试样的前处理方法、优选了适宜的仪器测定参数和分析谱线,采用基体匹配法进行基体效应的校正。实验结果表明,各元素分析谱线线性相关系数大于0.999 0,方法检出限在0.000 12%~0.001 4%之间。方法用于稀土镁铸铁标准物质分析,测定值与认定值相符,测定结果的相对标准偏差在0.59%(Si)~6.9%(La)范围。  相似文献   

13.
直流辉光放电发射光谱法同时测定硅钢中11种元素   总被引:1,自引:1,他引:0       下载免费PDF全文
通过直流辉光放电光谱分析硅钢样品的光谱行为,考察放电电压、放电电流、预溅射时间和积分时间对光谱强度和稳定性的影响。以铁为内标元素,优化分析条件为放电电压1 100V,放电电流50 mA,预溅射时间45 s,积分时间10 s,建立直流辉光放电光谱法测定硅钢中11种元素的定量分析方法。考察方法的精密度和准确度,其中Si、Mn、Cr、Ni、Cu、Al、B、Ti的相对标准偏差(RSD)小于2%,C、S、P的相对标准偏差(RSD)小于4%,各元素的测定结果与认定值吻合。  相似文献   

14.
交流电弧发射光谱法测定地球化学样品中银锡硼   总被引:2,自引:0,他引:2       下载免费PDF全文
对于地球化学样品中银、锡、硼元素的检测通常采用电弧原子发射光谱法,但是,传统的分析方法需要依靠相板记录,采用计算机定量译谱,分析过程繁琐,而且分析结果受相板质量及人为因素影响较大。采用改装后具有直读功能的CCD-I型交流电弧发射光谱仪,可对地球化学样品中的痕量银、锡、硼进行快速测定,取代了传统的相板记录及洗相译谱等繁琐的操作程序,提高了测试效率。实验建立了交流电弧发射光谱法测定地球化学样品中银、锡、硼的分析方法,试验了不同缓冲剂及工作条件对银、锡、硼测定的影响。选择K_2S_2O_7、Al_2O_3、NaF、KI和碳粉的混合物为固体缓冲剂,采用内标法,以锗(Ge)作为内标元素;选择合适的分析线对,以不同的激发时间进行摄谱绘制各元素的蒸发曲线,得出最佳激发时间为30s。通过扣除分析线和内标线背景,能有效消除基体对测定结果的影响,得到了较好的分析结果,各元素校准曲线的相关系数均不小于0.999 0。在优化的实验条件下,方法检出限为:0.015μg/g(银),0.45μg/g(锡),0.90μg/g(硼)。选取7个国家一级地球化学标准物质进行精密度考察,各元素测定结果的相对标准偏差(RSD,n=12)均小于10%;采用实验方法对岩石、土壤、水系沉积物国家一级标准物质进行测定,结果与认定值相符。  相似文献   

15.
石镇泰  罗文蕊 《冶金分析》2012,32(11):61-66
通过采用硫酸沉淀分离基体铅和选择合适的分析线及背景校正方法消除基体和共存元素干扰,实现了高纯铅中痕量杂质元素砷、铋、铜、锑、锡、锌、铁的电感耦合等离子体原子发射光谱法测定。对仪器的各项测定参数进行优化并将所建立的测定方法应用于实际样品分析,结果表明:用本法测定高纯铅标准样品中砷、铋、铜、锑、锡、锌、铁,测定值与认定值相符,测定结果的相对标准偏差均小于7%。  相似文献   

16.
采用氢氧化钠溶解样品,硝酸酸化,电感耦合等离子体原子发射光谱法(ICP-AES)测定二硼化钛增强铸铝复合材料中钛、硼、硅、镁、锌、铁。分别采用逐级稀释法、标准溶液系列使用基体匹配和无基体匹配这两种方法,考查铝的基体效应。结果表明,样品质量浓度在50~500 μg/mL范围内,铝基体对测定基本无影响。仪器选定的实验条件下,以无基体匹配的标准溶液系列绘制校准曲线,待测元素的线性方程相关系数均大于0.999 6。方法中各元素的检出限在0.000 9%~0.010%之间。将方法应用于TiB2/AlSi复合材料实际样品中钛、硼、硅、镁、锌、铁的测定,结果的相对标准偏差(RSD,n=11)均小于3%,回收率在94%~113%之间;按照实验方法测定两个铸铝标准样品中硅、镁、锌和铁,测定值与认定值一致。  相似文献   

17.
通过最佳微波消解条件、分析谱线和内标元素的选择,基体及共存元素间光谱干扰的研究,检测限的测定以及样品分析,建立了微波消解-电感耦合等离子体原子发射光谱法测定硼铁中硼的分析方法。测定时可选择182.641,208.959,249.773 nm 3条谱线作为硼的分析线。当选择前两条谱线时,铁的质量浓度在0.5~2 mg/mL范围对测定没有影响;但是当铁的质量浓度在2 mg/mL时,由于硼的分析线(249.773 nm)受铁谱线(249.782 nm)干扰,对测定产生影响,这种影响可通过基体匹配方法消除。与硼共  相似文献   

18.
电感耦合等离子体光谱法测定铌铁中铌和钽   总被引:3,自引:0,他引:3       下载免费PDF全文
介绍了采用电感耦合等离子体原子发射光谱法(ICP AES)测定铌铁中铌和钽的方法。试样采用氢氟酸、硝酸溶解,硫酸冒烟,酒石酸钾钠络合的方法,有效地克服了由于铌、钽水解难以测定的困难。通过选择没有共存元素干扰的谱线作为铌、钽的分析线和采用铌铁标准物质及纯铁制备的校准溶液制作校准曲线,消除了基体和共存元素对测定的影响。在优化的条件下用拟定的方法测定铌铁标准物质中的铌和钽,测定结果的相对标准偏差(n=6)分别为017%和060%,且测定值与认定值一致。  相似文献   

19.
在0.57~1.43 mol/L硝酸介质中, 用甲基异丁基酮(MIBK)萃取钼酸铵与磷生成的磷钼杂多酸, 使磷与基体铁分离后, 选择波长213.618 nm的谱线作为分析线, 采用电感耦合等离子体原子发射光谱法(ICP-AES)测定了高纯铁中磷的含量。校准曲线的线性回归方程为I= 15.04ρ+0.012 1, 相关系数为0.999 6, 方法的检出限为0.020 mg/L。通过萃取分离和选择合适的谱线作为磷的分析线, 基体和共存元素对测定没有干扰。方法用于多个高纯铁标准物质中磷的测定, 测定值与认定值一致, 测定结果的相对标准偏差(n=10)在0.54%~2.9%之间。方法适用于高纯铁中0.000 10%~0.010%磷的测定。  相似文献   

20.
射频辉光放电发射光谱法测定不锈钢成分的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了射频辉光放电发射光谱法(rf-GD-OES)测定不锈钢成分C,Si,Mn,P,S,Cr,Ni,Cu,Co,Al。考察了射频功率、载气气压、预溅射时间等仪器参数对不锈钢元素谱线发射强度及相对强度稳定性的影响和直流自偏压与射频功率和载气气压的关系。以此为基础,优化后的最佳分析条件为:射频功率90 W、载气气压300 Pa、预溅射时间100 s、积分时间20 s。方法用于测定不锈钢标准样品,测定值与认定值相符,精密度良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号