首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
讨论了熔剂体系及样品的稀释比例、熔融温度对强度的影响、熔融时间对玻璃熔片均匀性的影响,通过对方法精密度和准确度的试验,确定了最佳试验条件.并用熔融法制样,X射线荧光光谱法测量白云石、石灰石中氧化钙、氧化镁、氧化硅.  相似文献   

2.
铝矾土中各组分的准确测定对指导实际炼钢生产具有很重要的作用。实验以35.3%(质量分数)四硼酸锂-64.7%(质量分数)偏硼酸锂为混合熔剂,以碘化铵溶液为脱模剂,在铂-金坩埚中熔融制备成玻璃样片,通过理论系数法和经验系数法进行吸收/增强校正,建立了X射线荧光光谱法(XRF)测定铝矾土中二氧化硅、氧化铝和三氧化二铁的方法。对样品与熔剂的稀释比、熔融温度、脱模剂种类及其用量进行了优化,结果表明:控制样品与熔剂的稀释比为1∶10,以13~15滴300g/L碘化铵溶液为脱模剂,在1 080℃熔融16min,制得的玻璃片均匀、透明、无气泡,符合测定要求。为保证校准曲线中二氧化硅、氧化铝、三氧化二铁这3种组分具有足够宽的含量范围和适当的含量梯度,选用矾土标准样品YSS066-2013、YSS067-2013、YSS068-2013以及由这3种标准样品按照一定质量比例混合配制成的人工合成校准样品绘制校准曲线,结果表明,各待测组分校准曲线的线性相关系数均大于0.998。二氧化硅、氧化铝和三氧化二铁的检出限分别为0.004%、0.015%和0.002 6%。将实验方法应用于铝矾土实际样品中二氧化硅、氧化...  相似文献   

3.
渣铁成分复杂,含铁量较高,其中的铁、钙、镁具有回收价值,但硅、铝、磷对渣铁回收有一定的影响,这些元素含量是渣铁回收利用的重要参数。实验利用熔融制样-X射线荧光光谱法(XRF)测定渣铁中全铁、氧化硅、氧化钙、氧化镁、氧化铝和磷含量,解决了传统方法检测渣铁中这些组分耗时长、步骤多、污染环境等问题,提高了检测效率。渣铁样品预先经过1 000℃高温灼烧1h,除去其中水分、碳及易挥发成分,氧化其中还原性物质;然后以四硼酸锂作为熔剂,按稀释比1∶10与灼烧后被测样品混合,先800℃预熔融2min,然后于1 150℃熔融12min,将样品制成均匀的玻璃融片。选用13种不同质量分数与渣铁成分类似的标准物质绘制校准曲线,仪器参数经过优化后,建立了X射线荧光光谱法快速检测渣铁中全铁、氧化硅、氧化钙、氧化镁、氧化铝、磷的方法。方法对平炉渣YSBC13838-96、转炉渣QD12-183、钒渣YSBC19809-2000标准样品的准确度试验结果表明:全铁、氧化硅、氧化钙、氧化镁、氧化铝、磷测定结果的相对标准偏差(RSD,n=7)为0.22%~4.2%;测定值与认定值一致。渣铁实际样品的测定值与国家标准方法检测...  相似文献   

4.
为充分发挥小型实验室设备的功能,实验采用熔融制样,使用台式能量色散X射线荧光光谱仪(10W, Rh靶)定量分析了硅酸盐样品中的Na2O、MgO、Al2O3、SiO2、P2O5、SO3、Cl、K2O、CaO、TiO2、V、Cr、MnO、Fe2O3、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、As、Ba、La、Ce、Th、U、Hf、Pb等32种主、次、痕量组分。对3种不同的解谱方法进行比较,确定Na、Mg、Al、Si、P、As、Ce、Cr、Cu、Ga、La、Nb、Ni、Pb、Th、U、V、Y选择感兴趣区解谱,其余元素用高斯或经改进的高斯函数的最小二乘法拟合解谱。选用有代表性的多个硅酸盐类样品,比较了理论检出限及10次重复测定计算3倍标准偏差得出的检出限,发现以3倍标准偏差作为检出限再取它们的平均值则更具代表性和使用意义。各组分的检出限为0.2~1740μg/g。精密度试验表明,各组分测定结果的相对标准偏差(RSD)为0.12%~10.5%(Na为轻元素,由于含量低,小能谱测定的精密度稍差);对两个土壤标准样品进行正确度验证,测定值与标准值一致。  相似文献   

5.
以碳酸锂和四硼酸锂为混合助熔剂,采用高温熔融制样,利用X射线荧光光谱仪测定铁矿石中的TFe、Si、Ca、Mg、Al、Mn、Ti、P含量。对试样与熔剂比例、熔样时间、内标元素等制样条件进行了讨论。结果表明,试样和熔剂的质量比1∶10、熔样时间15 min、Co2O3为内标物质为好,并运用Co内标法和数学法进行了重叠干扰和基体效应的校正。精密度试验表明,各元素相对标准偏差(n=10)值在0.08%~2.39%,用于实际标准样品测定,检测值与认定值结果相符。  相似文献   

6.
采用无水四硼酸锂熔融制样,建立了用波长色散X射线荧光光谱(XRF)法测定三氧化钼中MoO3、Pb、Cu、SiO2、CaO、Fe2O3、K2O 7种组分的方法。以Mo为主要分析元素分别对仪器参数、分析谱线、曲线拟合进行了研究,并详细讨论了熔融法制样条件中熔剂的选择、脱模剂的选择、熔融温度和熔融时间的确定。采用经过多次化学分析的样品作为标准样品绘制校准曲线并选择相应校正程序进行校正。该法用于三氧化钼样品的分析,结果同湿法分析数据相吻合,能满足生产中三氧化钼样品中七种组分分析的需要。  相似文献   

7.
研究了熔融制样-X射线荧光光谱法测定磁铁矿中7种组分的分析方法。考察了稀释比、硝酸锂氧化剂用量、溴化锂脱模剂用量等因素,在优化条件下进一步选择了熔融温度及熔融时间。按试样与熔剂稀释比为1∶20在1 050 ℃熔融10 min制成玻璃样片,直接用X射线荧光光谱法(XRF)测定磁铁矿中的TFe、CaO、MgO、Al2O3、SiO2、TiO2和S。选择含铁量不同的一组磁铁矿标准样品建立校准曲线,线性相关系数均不小于0.997 4。测定磁铁矿实际样品时,测定结果与化学法一致,相对标准偏差中TFe为0.29%,S为3.4%,其它组分在0.29%~2.5%之间。  相似文献   

8.
熔融制样-X射线荧光光谱法(XRF)测定轻烧白云石样品,需重点解决无标准样品的难题。由于轻烧白云石是由白云石原料在1 000℃煅烧而成,因此采用具有含量梯度的系列煅烧后的白云石有证标准样品绘制校准曲线,各待测元素校准曲线的线性最大偏离小于0.4%,有效解决了缺少白云石标准样品的问题。轻烧白云石样品以Li2B4O7为助熔剂,采用高温熔融制样,实现了熔融制样-X射线荧光光谱法对轻烧白云石中SiO2、CaO、MgO含量的测定。对熔融制样条件进行优化,确定试样与熔剂以1∶13的稀释比,以3滴500g/L NH4Br溶液为脱模剂,在1 100℃熔融15min,熔融制得的玻璃熔片均匀、透明、无气泡,符合测定要求。方法应用于轻烧白云石实际样品中SiO2、CaO和MgO的测定,结果的相对标准偏差(RSD,n=10)在0.22%~1.4%之间;正确度试验表明,轻烧白云石样品的测定结果与国家标准方法GB/T 3286.1—2012和GB/T 3286.2—2012测定结果相符...  相似文献   

9.
熔融制样-X射线荧光光谱法测定钛铁矿中主次组分   总被引:1,自引:0,他引:1       下载免费PDF全文
使用Li2B4O7和LiBO2混合熔剂(质量比为67∶33),NH4NO3作氧化剂,饱和LiBr溶液作脱模剂,在电加热熔样机上制备玻璃熔片,建立了波长色散X射线荧光光谱法(WD-XRF)测定钛铁矿物中TiO2、TFe、SiO2、A12O3、V2O5、MgO、CaO、S、P、Na2O的分析方法。实验表明,在熔样比例(质量比)为15∶1、熔样温度为1 100 ℃、熔样时间为15 min时熔样效果最佳。在最佳实验条件下,在自制钛铁矿标准样品的含量范围内,各组分的含量与其荧光强度呈线性关系,相关系数在0.995 6~0.999 7之间。采用基本参数法对基体效应进行校正后,平行测定样品10次,所得结果的相对标准偏差除P为9.8%外,其它各组分均不大于1.3%。采用实验方法对钛铁矿样品中各组分进行测定,所得结果和湿法测得值一致。  相似文献   

10.
针对采用X射线荧光光谱法分析铜精矿时熔融制样过程中存在玻璃熔片脱模困难和铂金坩埚腐蚀严重的问题,进行分析和试验。通过试验得出样品在熔融过程中对脱模剂加入量、加入时机和熔融时间的合理控制是解决上述问题的关键,并找到了最佳方案。通过对该方案准确度和稳定性试验可以看出该分析方法各元素最大绝对误差-0.11%,最大标准偏差0.073%。所以该方案准确度高,精密度好,既解决了上述熔融制样的问题又能满足公司日常生产控制需要。  相似文献   

11.
采用传统的化学湿法测定钛铁中主次元素含量时操作繁琐,分析时间长且不易掌握。为开拓X射线荧光光谱仪测定钛铁的应用,实验采用硫酸(1+10)溶解试样,低温加热蒸干、冒硫酸烟、高温加热预氧化技术,解决了钛铁合金高温熔融时单质合金元素易与铂形成低温共熔体而损坏铂黄坩埚的难题,并对硫酸浓度及用量、试样溶解条件、稀释比及熔融温度和时间对检测结果的影响进行了研究,得出了使用10 mL硫酸(1+10)溶解试样、加热冒尽硫酸烟、以1∶40的稀释比在1 100 ℃温度下熔融15 min的最佳试验条件,并以此条件建立了熔融制样-X射线荧光光谱法测定钛铁中钛、磷、硅、锰、铝的校准曲线,校准曲线的线性相关系数均大于0.993。选用钛铁样品平行制备12个玻璃样片,以进行精密度考察,5种元素测定结果的相对标准偏差(RSD,n=12)在0.15%~5.0%范围内。采用实验方法测定钛铁标准样品中钛、磷、硅、锰、铝,测定值与认定值基本一致。对于钛铁样品,实验方法与国家或行业标准方法检测结果相符,能满足钛铁合金的日常检测需求。  相似文献   

12.
钟坚海 《冶金分析》2018,38(11):24-29
铝矿中主、次及微量成分含量对生产工艺及产品质量具有重要影响,传统的检测方法操作过程繁琐,分析周期长,已难以满足检测需求。实验采用熔融法制样,样品经硝酸锂预氧化后,选择质量比为12∶22的Li2B4O7和LiBO2混合试剂作为熔剂,熔剂与样品比例为10∶1,以NH4I为脱模剂,在1050℃下熔融10min制备熔片。采用有证标准物质及其与高纯Al2O3的人工合成样品为校准样品,对谱线重叠情况进行了考察,并通过变化的理论α系数法校正元素间的吸收增强效应,建立了铝矿中Al2O3、SiO2、Fe2O3、CaO、MgO、P2O5、Na2O、K2O、TiO2、MnO、Ga2O3、ZrO2、V2O5、Cr2O3及S等15种组分的X射线荧光光谱法(XRF)。精密度实验表明,各组分测定结果的相对标准偏差(RSD,n=9)在0.18%~12%之间;对标准样品进行正确度考察,测定值与认定值一致。方法可同时满足铝土矿、叶蜡石、莫来石、矾土、高岭土等多种铝矿的测定。  相似文献   

13.
黑刚玉是一种以Al2O3、SiO2和TiO2为主要成分的新型环保材料,其化学成分的分析一般采用滴定法、分光光度法或原子吸收光谱法等,这些方法操作相对繁琐、流程长.实验采用H3BO3-Li2CO3混合熔剂(m∶m=7∶3)按质量比为1∶10的稀释比进行熔融制样,加入0.15 g NH4I脱模剂,有效地消除了矿物效应、粒度...  相似文献   

14.
王娟 《冶金分析》2020,40(6):62-67
为消除硅钙钡合金试样熔融制片时侵蚀铂-黄坩埚的难题,实验中硅钙钡样品以四硼酸锂-碳酸锂(m∶m=2∶1)为预氧化熔剂,在石墨垫底的瓷坩埚中高温熔融成熔球,再将熔球转到铂-黄坩埚中,再用四硼酸锂为熔剂熔融制成玻璃片,这样铂-黄坩埚在熔融制样过程中的腐蚀问题得到了有效解决,实现了熔融制样-X射线荧光光谱法(XRF)对硅钙钡合金中硅、钙、钡、磷、铝的测定。实验确定了最佳制样条件:0.200 0g试样、2.000 0g四硼酸锂、1.000 0g碳酸锂在石墨垫底的瓷坩埚中,500℃灰化完全,900℃熔融15min,取出冷却;移入盛有3.000 0g四硼酸锂的铂-黄坩埚中,加0.50mL 300g/L碘化钾脱模剂,在1 150℃熔融15min,取出摇匀,再熔融15min,取出摇匀冷却,制得均匀玻璃片。实验方法选用具有适当梯度的硅钙钡合金标样和内控样绘制校准曲线,各待测元素校准曲线的相关系数r≥0.999 7。精密度结果表明,各元素测定结果的相对标准偏差(RSD,n=10)在0.11%~5.9%;正确度结果表明,硅钙钡合金标样采用本法分析,其测定值与标准值相吻合。硅钙钡试样采用本法分析,其测定值与行...  相似文献   

15.
李勇  顾强  刘洪艳 《冶金分析》2022,42(8):29-34
萤石广泛应用于钢铁工业,作为炼铁、炼钢的助剂,对萤石质量进行评价的主要指标是氟化钙和二氧化硅的含量。采用熔融制样-X射线荧光光谱法(XRF)测定萤石中氟化钙常采用氟谱线法和钙谱线法两种方法,若采用氟谱线法测定,会因无法消除萤石可能含有的氟化镁干扰,存在测定结果偏高的问题;若采用钙谱线测定,因测定得到的是钙的总量,还需再减去碳酸钙中钙量,方法较为繁琐。依据萤石中的碳酸钙可被稀乙酸溶解而氟化钙和二氧化硅不会被溶解的原理,采用10%(V/V)乙酸溶解样品后过滤,保留滤渣,实现了对样品中碳酸钙的分离。将残渣和滤纸灰化,将其与四硼酸锂-偏硼酸锂-氟化锂混合熔剂(mmm=65∶25∶10)、溴化钾混合熔融制成玻璃样片,实现了X射线荧光光谱法对萤石中氟化钙和二氧化硅测定。实验结果表明,氟化钙和二氧化硅校准曲线的线性相关系数达到0.997以上,方法中二氧化硅的检出限为0.089%。对萤石样品进行精密度考察,氟化钙和二氧化硅测定结果的相对标准偏差(RSD,n=12)分别不大于0.12%和0.92%。按照实验方法测定萤石标准样品和实际样品,标准样品中氟化钙和二氧化硅的测定值与标准值一致;实际样品中氟化钙的测定值与标准方法GB/T 5195.1—2017中EDTA滴定法测定值一致性较好,二氧化硅测定值与标准方法GB/T 5195.8—2017中硅钼蓝分光光度法测定值一致性较好。  相似文献   

16.
李勇  顾强  刘洪艳 《冶金分析》1981,42(8):29-34
萤石广泛应用于钢铁工业,作为炼铁、炼钢的助剂,对萤石质量进行评价的主要指标是氟化钙和二氧化硅的含量。采用熔融制样-X射线荧光光谱法(XRF)测定萤石中氟化钙常采用氟谱线法和钙谱线法两种方法,若采用氟谱线法测定,会因无法消除萤石可能含有的氟化镁干扰,存在测定结果偏高的问题;若采用钙谱线测定,因测定得到的是钙的总量,还需再减去碳酸钙中钙量,方法较为繁琐。依据萤石中的碳酸钙可被稀乙酸溶解而氟化钙和二氧化硅不会被溶解的原理,采用10%(V/V)乙酸溶解样品后过滤,保留滤渣,实现了对样品中碳酸钙的分离。将残渣和滤纸灰化,将其与四硼酸锂-偏硼酸锂-氟化锂混合熔剂(mmm=65∶25∶10)、溴化钾混合熔融制成玻璃样片,实现了X射线荧光光谱法对萤石中氟化钙和二氧化硅测定。实验结果表明,氟化钙和二氧化硅校准曲线的线性相关系数达到0.997以上,方法中二氧化硅的检出限为0.089%。对萤石样品进行精密度考察,氟化钙和二氧化硅测定结果的相对标准偏差(RSD,n=12)分别不大于0.12%和0.92%。按照实验方法测定萤石标准样品和实际样品,标准样品中氟化钙和二氧化硅的测定值与标准值一致;实际样品中氟化钙的测定值与标准方法GB/T 5195.1—2017中EDTA滴定法测定值一致性较好,二氧化硅测定值与标准方法GB/T 5195.8—2017中硅钼蓝分光光度法测定值一致性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号