首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
卫星视频中微小运动车辆由于特征信息少,使得当前基于特征的方法很难获得良好结果,为了应对卫星图像中复杂的图像环境以及目标微小的像素占比,提出了一种基于多种图像先验信息约束显著性的运动车辆检测方法.首先利用简单线性迭代聚类算法对视频帧生成数量适宜结构紧凑的超像素,并基于人眼显著性模型计算各超像素的边界相关性;同时采用背景建...  相似文献   

2.
由于多舰船目标显著性检测过程容易将边界像素作为背景处理,本文提出了应用颜色聚类图像块的多舰船显著性检测方法。该方法首先检测邻域像素是否具有颜色相似性,并将临近的具有相似颜色的像素聚集在一起作为一个图像块。接着,对获得的图像块进行扩展,使图像块包含很多其他图像块的像素以提高图像块内像素间的对比强度;对边缘像素进行背景索引标记,计算图像块中像素的显著性强度,采用阈值分割方法获得目标显著性区域。最后,基于颜色聚类的图像块存在部分重叠的特点,利用权值对存在叠加的显著性图像进行融合,从而获得多舰船目标整幅图像的显著性检测结果。对获得的多舰船目标图像进行了实验测试,并对本文算法结果和当前比较先进的其它显著性检测算法进行了效果对比。结果显示:提出的利用颜色聚类图像块的舰船显著性检测方法的查全率达到78%以上,准确率达到92%以上,综合评价指标Fβ≥0.7;无论考虑单个指标还是整体指标,本文算法均优于其他对比算法。  相似文献   

3.
运动目标检测是视频监控系统的重要组成部分,针对传统的基于混合高斯模型(GMM)的运动目标检测方法存在的不足,提出一种基于颜色和梯度特征相结合的混合高斯模型的运动目标检测算法。该算法首先基于像素的颜色特征建立混合高斯模型,进行运动目标初步检测;然后结合像素的梯度特征,建立像素梯度的混合高斯模型,实现运动目标精确检测。通过在室内和室外等不同场景下进行的运动目标检测实验,结果表明,该算法能有效消除光照变化影响,抑制运动目标的阴影干扰,对室内和室外环境的运动目标检测都具有较好的检测效果和鲁棒性。  相似文献   

4.
结合局部特征及全局特征的显著性检测   总被引:2,自引:0,他引:2  
针对目前大多数显著性检测方法中采用背景种子以及局部区域对比度显著性检测模型的缺点,本文提出了一种综合考虑局部特征以及全局特征的显著性检测算法。在对图像进行分割之后,算法首先融合了采用多特征方式生成的背景显著图与采用前景区域对比度方式生成的前景显著图,之后使用高斯滤波器对融合后的结果进行优化形成局部特征显著图。其次,在局部特征显著图的基础上提取多种特征的样本集合进行训练,从而得到全局特征显著图。算法最后将第一步生成的局部特征显著图与全局特征显著图进行结合生成最终的显著图。实验部分验证了算法各部分的有效性,并且在3个公开数据集上对文章方法与近年来优秀的显著性检测算法进行了对比,实验结果显示,本文算法在CSSD数据集上的准确率、召回率以及F-measure分别达到了0.837 5、0.743 4和0.813 7,在其它数据集上也有良好表现。实验表明,本文算法能够有效抑制背景区域,并且高亮前景区域,更好地检测出显著目标。  相似文献   

5.
针对背景环境复杂的图像组中协同显著性检测的共显性目标混乱不一致、准确率低的问题,提出了一种基于对象性和多层线性模型的图像协同显著性检测方法。首先通过显著性先验和对象性概率加权的背景引导因子BGO计算图像间显著性引导传播的显著值;然后设计了一种局部区域特征计算图像内显著值,并使用图像的hu矩的零、一阶和二阶矩对两阶段显著值进行整合;最后通过多层线性模型自适应地融合各个显著图得到最终结果。实验结果表明:本文算法分别在iCoseg和MSRC两个数据集上的平均精度达到了87.80%和83.50%,在其它实验指标上的评估结果也有明显提高,增强了算法的适应能力。  相似文献   

6.
基于TCS3200的多点颜色检测装置的设计   总被引:1,自引:0,他引:1  
蒋寅国  邓燕妮 《仪表技术》2011,(3):54-55,57
在简单介绍颜色测量原理的基础上,文章给出了一种基于TCS3200传感器的多点颜色检测装置的设计方案。  相似文献   

7.
针对轴承缺陷图像存在的光照不均匀、整体对比度低、缺陷细节模糊等问题,结合鲁棒主成分分析和视觉显著性,提出一种新的轴承表面缺陷检测算法。首先,在鲁棒主成分的基础上,采用广朗日乘子算法计算稀疏矩阵,并根据稀疏矩阵计算缺陷区域的视觉显著值,生成凸显缺陷区域的显著图,然后,利用Otsu法对显著图进行缺陷分割,得到缺陷检测结果。并进行对比实验研究,结果表明,该检测方法能够显著突出轴承表面缺陷区域,实现对轴承表面各类缺陷的有效检测,与其他几种显著性检测方法相比,具有较好的查准率和召回率。  相似文献   

8.
基于颜色直方图的视频突变镜头边界检测   总被引:1,自引:0,他引:1  
首先概述了视频镜头边界检测的未来趋势、发展现状和行业背景。然后描述了视频镜头边界检测的基本概念,详述了其研究目的和意义,综述了视频突变镜头的当前行业内使用的方法。接着重点探究了基于颜色直方图的视频突变镜头边界检测的方法,阐述了其理论,设计并在工程实践中验证了镜头边界检测算法。最终对实验结果进行了深入分析。  相似文献   

9.
基于视觉显著性的太阳能电池片表面缺陷检测   总被引:3,自引:0,他引:3       下载免费PDF全文
现有基于机器视觉的太阳能电池片表面缺陷检测算法均是采用各种类型的数学模型来进行算法设计,为进一步提高检测准确率,从人眼仿生学角度出发,首次将人眼的视觉注意机制引入到太阳能电池片表面缺陷检测中,提出了一种基于视觉显著性的太阳能电池片表面缺陷检测算法。首先,对输入的太阳能电池片表面图像进行预处理,去除对检测有影响的噪声和栅线;其次,提出一种基于自学习特征的视觉显著性检测算法来大致定位缺陷区域;随后,提出一种视觉显著性和超像素分割相结合的算法来进一步精确定位缺陷区域;最后,通过形态学后处理得到最终检测结果。在包含多种缺陷类型的测试图像库上的主观和客观实验评估表明,该算法具有较高的检测准确率。  相似文献   

10.
基于彩色监控视频图像,利用火焰影像的时间运动特性,采用混合高斯背景建模方法从监控视频图像序列中提取出运动前景像素;在RGB色彩空间模型中通过火焰颜色的加权判别算法提取出具有火焰颜色的运动像素区域;最后,提出一种基于统计频率计数的火焰频闪特征识别方法,用于将视频图像中真实的火焰区域从具有火焰像素颜色的运动区域中区分出来。Matlab仿真结果表明,该算法具有很高的有效性和鲁棒性,能够应用实际的视觉火灾检测系统之中。  相似文献   

11.
《机械科学与技术》2014,(11):1643-1647
针对基于颜色特征的目标识别方法无法去除相同颜色干扰物的问题,提出了一种基于颜色和尺寸特征的目标识别算法。通过联合HSV(Hue,Saturation,Value)颜色空间转换,采用阈值法和种子生长法对特征颜色进行图像分割,通过双目视觉技术利用目标物体尺寸信息对分割后的图像区域进行过滤,获得颜色和尺寸均符合指定要求的物体图像区域,以此实现目标物体的识别,并提高物体识别的抗干扰能力。通过多次重复实验证明,在进行规则形状物体的识别时,该方法切实有效。  相似文献   

12.
丁鹏  张叶  贾平  常旭岭 《光学精密工程》2017,25(9):2461-2468
为了精确地检测到舰船目标,提出了一种基于多特征、多尺度视觉显著性的海面舰船目标检测方法。该方法首先利用多尺度自适应的顶帽算法抑制云层、油污的干扰,然后提取双颜色空间特征以及边缘特征构成双四元数图像进行舰船显著性检测。由于充分利用了双四元数图像,故可对多个特征尺度进行处理,并保证不同尺度特征之间关联性。该方法还利用人眼对不同用大小的图像关注目标不同的特点对图像进行上下采样以避免漏检和检测重叠。在得到显著图后利用自适应图像分割(OTSU)算法确定舰船所在的区域,并在原图上标定、提取舰船目标。在多种海面情况下进行了实验分析,结果表明:该算法可以排除多种干扰,精确地检测到舰船目标,真正率达97.73%,虚警率低至3.37%,相较于他频域显著性检测算法在舰船检测方面有明显的优势。  相似文献   

13.
针对光照变化条件下彩色目标的鲁棒检测要求,分析了单独采用HSV和L*a*b*颜色空间检测彩色目标的不足之处,为进一步降低光照变化和背景干扰,提出采用改进的紧凑彩色模型。考虑到不同颜色在HSV和L*a*b*颜色空间中的分布差异,建立了一种联合这2种颜色空间紧凑彩色分布特征的混合颜色模型,用于更准确地描述目标的颜色特征。试验结果表明,使用混合颜色模型可以获得更好的目标检测效果。  相似文献   

14.
以提高番茄人工分拣效率为目的,利用计算机视觉技术,建立番茄检测试验平台,将采集的番茄图像转化为HIS颜色模型,进行二值化,研究番茄成熟度。文章对番茄规定的四个等级进行分级,其分级的结果为:超优、优、良和未成熟的判断正确率分别为80%、60%、40%和80%,总的判断正确率为65%。  相似文献   

15.
基于谱残差视觉显著性的带钢表面缺陷检测   总被引:2,自引:0,他引:2  
陈海永  徐森  刘坤  孙鹤旭 《光学精密工程》2016,24(10):2572-2580
针对带钢表面缺陷检测实时性要求高,采集的图像易受光照环境影响且缺陷特征弱等因素影响,提出一种基于谱残差视觉注意模型的带钢表面缺陷在线检测算法。首先,提出改进同态滤波方法对图像预处理,去除光照不均匀的影响,改善后续的分割结果。然后,构建谱残差视觉注意模型,通过对数频谱曲线差分得到缺陷显著图像。最后,提出加权马氏距离方法对显著图像阈值化增强,并利用连通区域标记法,标记出原带钢图像的缺陷位置。对提出的算法进行了实验验证,结果显示:该算法检测速度快,单幅图像平均检测耗时仅37.6ms,满足带钢在线实时检测要求。在同一缺陷数据库与灰度投影法,多尺度Gabor边缘检测法和隐马尔可夫树模型法进行了性能对比,结果表明:本文算法对带钢常见8类缺陷类型,平均检测率达到了95.3%,且漏检率和误检率较低,有效性高于对比算法。  相似文献   

16.
基于对比度与最小凸包的显著性区域检测算法   总被引:2,自引:0,他引:2  
显著性检测算法常通过计算像素或像素块之间的对比度来确定显著性,但是图像背景中经常会出现特殊区域与图像其他部分也有较大的对比度,导致基于对比度的显著性检测算法无法将这部分背景区域与主要目标区分开.提出一种基于对比度与最小凸包的显著性区域检测算法.以超像素作为基本计算单位,使用Wasserstein距离衡量超像素之间的差异,通过计算超像素间的全局与局部对比度得到对比度显著图;找出图像中特征点Harris角点的最小凸包,以最小凸包几何中心为中心点,根据每个超像素与中心点的距离计算中心显著图;最后将对比度显著图与中心显著图相结合得到最终的显著图,这种算法可以有效地将背景中具有高对比度的区域区分开.在Corel和MSRA图像数据库上进行仿真实验,结果表明该文所提算法对显著区域检测的查准率、查全率等仿真评价指标相对于传统算法都有明显的提升.  相似文献   

17.
王哲  郭少军 《光学精密工程》2017,25(6):1652-1661
针对近红外星图辐射效应产生的亮斑会造成恒星计算质心与真实质心偏移的情况,文章从近红外星图背景与目标差异性入手,提出了稳定背景提取与恒星显著性提取的方法。显著性检测中利用SLIC对图像进行超像素计算,依据超像素间的几何连通性和灰度相似性进行近红外星图背景与恒星的分离。本文方法获得的恒星区域具有较好的连通性,有效解决了利用硬阈值分割恒星不连通所造成的存在大量虚假目标的问题。实验中,本文采用凝视状态拍摄的165幅近红外星图作为样本,检测获得的恒星质心与标定质心偏移方差小于0.27,证实了方法的有效性〗。  相似文献   

18.
交通标志检测是道路交通标志识别系统中的一个关键问题。本研究在分析中国道路交通标志的颜色和几何形状这2种先验特征的基础上,提出了颜色形状对的概念,并据此构造了一种新的交通标志颜色-几何模型。该模型由交通标志的3种基本颜色和5种基本形状构成,充分体现了颜色与几何形状具有唯一确定性关系这一重要特点。因此,基于颜色-几何模型的交通标志检测可以同时实现交通标志的粗分类,将116种中国道路交通标志直接分为7个子类,降低了道路交通标志识别系统的复杂性。仿真实验研究表明,采用该模型的交通标志检测与粗分类的正确率均达到了100%,具有良好的实时性和有效性。  相似文献   

19.
基于视觉显著性的无监督海面舰船检测与识别   总被引:2,自引:0,他引:2  
在航天航空光学遥感舰船目标检测中,受大气、光照、云雾和海岛等海面不确定条件的影响,传统的舰船检测方法存在检测效率低和可靠性差等问题,因此,本文提出一种无监督海面舰船目标自动检测方法。该方法以视觉显著性为依据,结合多显著性检测模型快速搜索海面目标,生成显著图后对其进行粗分割,对提取的目标切片做标记并进行精细分割,利用改进的Hough变换旋转目标主轴以保证目标对Y轴的对称性;对可能检测到的厚重云层和岛屿等伪目标使用梯度方向特征进行鉴别,通过判定目标在360°范围内8个区间的梯度幅度统计值,确认舰船目标及去除伪目标。实验结果表明,该舰船检测方法能够成功提取海面上大小不同,位置随机分布的舰船目标,准确获取舰船目标的数量和位置信息,在大量真实光学遥感图像上的测试结果显示,本文方法检测准确率高于93%,通过目标鉴别处理,剔除伪目标后,虚警率可低于4%,鲁棒性较强。  相似文献   

20.
计算机视觉建立了图像处理与工业之间的联系,将现代感知技术引入到了自动化工业中。同时,基于深度学习的缺陷检测方法已在自动化检测中扮演重要角色。提出一种结合显著性检测算法与改进卷积神经网络CU-Net的织物缺陷检测方法。首先融合五条基于人类视觉机制的重要显著性线索,对织物图像预处理,其次对经典U-Net网络改进,在压缩网络尺寸基础上,引入注意力机制并使用新的复合损失函数进行训练。利用公开的AITEX缺陷织物数据集作为测试样本,结果表明,方法的准确率Acc和召回率RE分别达到98.3%和92.7%,相比于其他检测方法的最高分数提高4.8%和2.3%,显著提升了织物缺陷检测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号