首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 984 毫秒
1.
采用稀王水溶样,建立了电感耦合等离子体质谱法(ICP-MS)同时测定钢铁及合金中镧、铈、镨、钕、钐含量的分析方法。确定了最佳仪器工作条件,选择适合的同位素消除了质谱干扰,选用标准加入法建立了校准曲线。实验表明,铁基体浓度不大于1 mg/mL时,基体效应不太显著,因此通过控制基体浓度为1 mg/mL消除了基体效应。选择In为内标元素补偿了长期分析信号的漂移。各元素检出限分别为La 0.023 ng/mL,Ce 0.021 ng/mL,Pr 0.025 ng/mL,Nd 0.075 ng/mL,Sm 0.057 ng/mL。将方法应用于实际样品分析,测定值与电感耦合等离子体原子发射光谱法(ICP-AES)结果一致,相对标准偏差不大于11.8%。  相似文献   

2.
采用硝酸低温溶解试样,以2%(V/V)硝酸为测定介质,建立了电感耦合等离子体质谱法(ICP-MS)测定稀土系贮氢合金中镉和铅的方法。以~(111) Cd和~(208)Pb作为测定同位素,消除了同量异位素和多原子离子的质谱干扰;以10.0ng/mL的~(133) Cs为内标校正了基体效应和仪器信号漂移。镉和铅元素的校准曲线相关系数均大于0.999 8,线性关系良好,方法检出限分别为0.03ng/mL和0.04ng/mL,方法测定下限分别为0.10ng/mL和0.13ng/mL。采用在稀土系贮氢合金试样中加入镉和铅标准溶液的方法配制稀土系贮氢合金合成试样,按实验方法进行处理并测定,测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)测定结果基本一致。采用实验方法对稀土系贮氢合金中铅进行测定,相对标准偏差(n=11)为4.2%,镉和铅的加标回收率分别为96%~104%和95%~102%。  相似文献   

3.
采用硝酸溶解样品, 建立了电感耦合等离子体质谱法(ICP-MS)测定镧镁合金中稀土杂质的含量。选择合适的测定同位素以及选用干扰元素校正方程克服了质谱干扰。对仪器工作条件进行了优化, 确定功率为1 100 W, 载气流量为0.80 L/min。讨论了测定条件对结果的影响, 确定测定介质为1%硝酸, 内标元素为Cs, 基体浓度小于0.3 mg/mL。方法测定下限为0.006 9~0.046 ng/mL。采用方法对实际样品进行测定, 回收率为98%~102%。与电感耦合等离子体发射光谱法(ICP-AES)进行方法对照, 两种方法测定结果基本一致, 相对标准偏差(RSD, n=6)在1.7%~4.5%之间。  相似文献   

4.
试样经王水分解后,加入三氯化铁溶液3.0 m L,聚氨酯泡沫塑料吸附,低浓度硫脲溶液解脱,电感耦合等离子体质谱仪测定化探样品中的微量金。实验结果表明,该方法金测定范围为0.10~500.00 ng/g,测定结果的相对标准偏差为8.33%~9.01%,加入标准物质回收率为94.0%~108.0%。该方法操作简单、耗时短、检出限低、精密度和准确度良好。  相似文献   

5.
张立锋  周凯红 《冶金分析》2017,37(11):17-21
采用盐酸-硝酸-氢氟酸-高氯酸溶解样品,建立了电感耦合等离子体质谱法(ICP-MS)测定低合金钢中镧、铈、镨、钕的含量。根据丰度高和无干扰的原则来选择139La(99.911)、
140Ce(88.48)、141Pr(100)、146Nd(17.62)为测量同位素;对仪器工作条件进行了优化,确定功率为1200W,载气流量为0.84L/min;讨论了测定条件对结果的影响,确定测定介质为2%硝酸;考察了基体质量浓度对待测元素信号强度的影响,确定基体质量浓度在0.5g/L以下;以铑、铟、铯和铊为内标元素对仪器信号漂移和基体效应进行校正试验,选择10ng/mL铯为内标。基体浓度小于0.5mg/mL。方法检出限为0.00072~0.0017ng/mL,方法测定下限为0.0024~0.0057ng/mL。采用实验方法对低合金钢实际样品进行测定,测定结果与电感耦合等离子体发射光谱法(ICP-AES)基本一致,相对标准偏差(RSD,n=6)在1.2%~4.0%之间。  相似文献   

6.
地球化学样品中的金、铂、钯含量极低,测定前必须进行有效分离。实验采用氯化钠、浓盐酸和饱和高锰酸钾分解混合液冷浸取分解试样,聚氨酯泡沫塑料富集、灰化,残渣王水溶解,电感耦合等离子体质谱法测定区域地球化学样品中的超痕量金、铂、钯。该方法的检出限分别为Au 0.039 ng/g、Pt 0.040 ng/g、Pd 0.058 ng/g,加入标准物质回收率为95.6%~102.5%,测定结果的相对标准偏差为0.33%~8.20%。该方法操作简单,分析速度快,准确度和精密度良好,适合大批量样品的分析测定。  相似文献   

7.
铁元素作为石英砂产品等级划分的重要指标元素,对其快速、准确测定非常重要。采用电感耦合等离子体质谱法(ICP-MS)测定铁时,会受到ArO+多原子分子离子的干扰。实验采用氢氟酸和硝酸溶解高纯石英样品,用硝酸提取测定元素,以冷焰模式进行测定消除了多原子分子离子ArO+的干扰,以100 ng/mL 钴为内标元素,56Fe为测定同位素,建立了电感耦合等离子体质谱法(ICP-MS)测定高纯石英样品中痕量铁的方法。对射频功率和采样深度、基体质量浓度进行了优化,确定射频功率为850 W,采样深度为5.3 mm。对基体质量浓度进行了考察,结果表明,通过控制称样量和稀释样品溶液的方式,控制测定溶液的基体质量浓度不大于10 mg/mL可有效克服基体效应。在优化的实验条件下,铁质量浓度在0.100~100 ng/mL范围内与其质谱强度呈线性相关,相关系数为0.999 6。以1.000 0 g称样量计,方法检出限为0.039 μg/g,定量限为0.13 μg/g。采用实验方法分别对5个铁含量水平的高纯石英样品中铁进行测定(n=9),并进行加标回收试验和方法比对试验,测定值和动能歧视碰撞池模式-电感耦合等离子体质谱测定结果基本一致,相对标准偏差(RSD)在3.2%~5.1%之间,加标回收率在96%~102%之间。  相似文献   

8.
烧结机头电除尘灰的交易日益活跃,而贵金属银含量为其定价的主要指标,故研究对其中银的测定方法具有重要意义。于700℃马弗炉中对试样进行灰化预处理后,再以电热板加热的方式用15mL王水-8mL氢氟酸-5mL高氯酸对其消解,或以微波的方式用6mL王水-3mL氢氟酸-2mL高氯酸对其进行消解,继而以20%~25%(体积分数)王水作为介质,用火焰原子吸收光谱法对消解液进行测定,据此,分别建立了电热板加热消解-火焰原子吸收光谱(FAAS)法与微波消解-火焰原子吸收光谱法两种测定烧结机头电除尘灰中银的方法。共存元素干扰试验表明:样品中除铁和钙外其他元素不干扰测定,通过向校准曲线用银标准溶液系列中加入5 500μg/mL铁、571.76μg/mL钙(相当于800μg/mL氧化钙)的方法可消除铁和钙对测定的干扰。分别采用实验建立的两种方法,对烧结机头电除尘灰实际样品中银进行测定,结果表明,两种方法的测定结果均与电感耦合等离子体原子发射光谱(ICP-AES)法相符,相对标准偏差(RSD,n=11)分别为1.4%~2.2%和2.0%~2.6%,回收率均在95%~104%范围内。  相似文献   

9.
丙烷脱氢技术越来越受到重视,其生产原料液化石油气(LPG)中汞含量的控制是生产的关键环节,因此迫切需要一种高效稳定的检测汞的方法。应用阳离子交换树脂在线富集液化石油气中的汞,用20%(体积分数,下同)王水湿法消解,建立了电感耦合等离子体质谱法(ICP-MS)测定LPG中汞的方法。对富集条件和消解方式进行了优化。确定汞的在线富集条件为:压力1.3MPa,流速500mL/h;样品的消解程序为:12g样品中加入50mL 20%王水于60℃消解1h。以基体匹配标准溶液校正了基体效应,选用202Hg为待测同位素消除了质谱干扰。实验表明,方法的线性范围为0.08~50μg/L,线性相关系数为0.999795,检出限为0.02μg/L。采用实验方法对液化石油气实际样品中汞进行分析,结果的相对标准偏差(RSD,n=5)为1.3%~6.6%,加标回收率为95%~101%。  相似文献   

10.
采用HCl、HNO_3、HF和HClO_4溶解铀铌铅矿,以电感耦合等离子体质谱法(ICPMS)测定了铀铌铅矿重选流程样品(原矿、精矿、中矿和尾矿)中铀(U)。通过选择合适的同位素238 U避免了质谱干扰,通过稀释基体质量浓度不大于0.30mg/mL和选择45ng/mL185 Re为内标相结合的方法消除了非质谱干扰。实验表明,在选定的实验条件下,U质谱强度与ρ(U)在5~60ng/mL范围内呈良好的线性关系,校准曲线相关系数r为0.999 2,方法检出限为0.000 4ng/mL。将实验方法应用于铀铌铅矿重选流程中的原矿、精矿、中矿和尾矿实际样品中U的测定,所得结果的相对标准偏差(RSD,n=6)为0.80%~3.9%,加标回收率为102%~106%。采用实验方法对铀铌铅矿重选流程样品(原矿、精矿、中矿和尾矿)中任意3个流程样品中的U含量进行测定,将其测定值代入质量守恒定律计算得到第4个流程样品中U含量的计算值,由实验方法对第4个流程样品中U含量的测定值与其计算值相比可计算得到第4个流程样品中U的回算率,实验表明,U的回算率为98%~106%。  相似文献   

11.
赵延庆 《冶金分析》2016,36(7):34-38
由于地质化探样品中金的品位较低,需将金分离富集后再进行测定。实验将样品经650 ℃高温灼烧后以王水(1+1)溶解,加入溴水以确保金全部被氧化为金,采用经20 g/L氢氧化钠-10%丙酮溶液处理过的聚氨酯泡沫塑料吸附金后于700 ℃灼烧灰化,用王水(1+1)溶解灰分,以5.0 ng/mL185Re为内标,实现了电感耦合等离子体质谱法(ICP-MS)对地质化探样品中金的测定。实验表明:用取样器加入1.0 mL饱和溴水进行氧化,控制吸附体积约为100 mL,加入泡沫塑料后振荡吸附35 min,金的吸附率可达到98.9%。金在1~10 μg/mL质量浓度范围内与其对应的信号强度呈线性关系,相关系数为0.999 4,方法检出限为0.12 ng/g。采用实验方法对铂族元素地球化学成分分析标准物质、金矿石标准物质、化探金标准物质中金进行测定,测得结果与认定值的相对误差(RE)小于9%,相对标准偏差(RSD,n=12)小于10%。  相似文献   

12.
选取5 mL王水为溶剂,采用微波消解法处理锌精矿样品,以205Tl作为测定同位素,建立了电感耦合等离子体质谱法(ICP-MS)测定锌精矿中痕量Tl的定量分析方法。优化后的微波消解程序如下:消解温度为190 ℃,升温时间为20 min,消解保持时间为20 min。采用直接稀释法消除基体效应,控制测试液中固体质量浓度不大于0.5 mg/mL。实验表明,Tl质量浓度在0.10~50.00 μg/L范围内与其对应的峰强度呈良好的线性关系,校准曲线相关系数为0.999 9。方法检出限为0.001 8 μg/L,方法测定下限为0.006 μg/L。对锌精矿实际样品中的痕量Tl进行分析,测定结果与国家标准方法中泡塑富集-电感耦合等离子体原子发射光谱法(ICP-AES)测定值基本一致,相对标准偏差(RSD,n=11)均小于5%。  相似文献   

13.
陈婷婷  刘俊  关明  杨忠  王婷 《冶金分析》2014,34(2):66-69
载金树脂物料经高温灰化后, 用王水溶解残渣, 选择328.628 nm波长的光谱线作为银的分析线, 采用电感耦合等离子体原子发射光谱法(ICP-AES)测定了试液中的银。金、铁、铝、硅、硫等基体元素产生的基体效应采用基体匹配的方法克服。方法的检出限为0.008 1 μg/mL, 样品测定结果的相对标准偏差在5.1%~7.3%范围, 回收率在93.4%~103.4%之间。方法简便、快速、可靠, 可用于进口载金树脂物料样品中银的测定。  相似文献   

14.
目前在黄金行业,金精矿冶炼过程中环保元素如铊、砷等的检测受到越来越多的关注,而金精矿中铊的检测尚无标准可依。采用盐酸、硝酸、氢氟酸、高氯酸分解金精矿样品,在王水介质中,在过氧化氢、三氯化铁存在下,使用聚氨酯泡沫富集铊,与杂质元素分离,并在沸水浴中使用硝酸(1+99)进行解脱,选择Tl 190.801nm为分析线,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定铊,建立了金精矿中铊的测定方法。通过试验,确定了最优分离富集参数,即为15%(V/V)王水、3%(V/V)过氧化氢、0.5g/L铁盐介质。铊的质量浓度在0.10~500μg/mL范围内与其发射强度呈线性,相关系数为0.999 9;方法的测定下限为6.5μg/g。金精矿中共存元素由于泡沫的分离富集作用而不影响测定。实验方法用于测定4个金精矿样品中铊,结果的相对标准偏差(RSD,n=11)为2.1%~5.0%;按照实验方法对金精矿样品中铊进行加标回收试验,回收率为92%~101%。  相似文献   

15.
采用高压密闭消解系统,以6 mL HNO3-1 mL HF-3 mLHCl酸体系消解锰矿石,建立了电感耦合等离子体质谱法(ICP-MS)测定锰矿石中钛、钒、锶3种金属元素的方法。选择48Ti、51V和88Sr为待测同位素,以钪(45Sc)和铟(115In)为内标校正了基体效应与信号漂移。钛、钒和锶校准曲线的线性相关系数均为0.999 9,检出限分别为0.12、0.003 0和0.014 ng/mL。将方法用于锰矿石实际样品分析,结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,相对标准偏差(RSD, n=11)不大于2.0%,加标回收率在99%~102%之间。  相似文献   

16.
采用王水消解无铅焊料样品,基体匹配法绘制校准曲线消除基体干扰对测定结果的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定无铅焊料中银、铜、铅、铁、锌、镉、砷、铝、锑、铋、铟、镍等12种元素的方法。在选定的实验条件下,方法中各元素的检出限在0.000 2~0.016 μg/mL之间,各元素校准曲线线性相关系数均大于0.999 5。按照实验方法测定样品,加标回收率为87%~125%,测定结果的相对标准偏差(RSD,n=6)在0.25%~5.1%之间,测定结果与参考值一致。  相似文献   

17.
利用石墨消解仪斜坡升温7 min至120 ℃,并在120 ℃保持20 min,以10%(V/V)王水为介质,实现了电感耦合等离子体质谱法(ICP-MS)对影响海绵钯品级的18种杂质元素的测定。研究表明:通过选择20 μg/L的45Sc 、89Y、159Tb作为内标及控制测定液Pd基体质量浓度为2.0 mg/mL,可有效校正基体效应;铝、镍、铜、锌、钌、铑、铂、银、锡、铱、金、铅、铋以标准模式进行测定,镁、硅、铬、锰、铁以氨气反应模式进行测定可消除质谱干扰。在选定的实验条件下,各元素校准曲线线性相关系数不小于0.999 6,方法检出限为1.0~42 ng/L。采用实验方法对海绵钯中杂质元素进行测定,所得结果的相对标准偏差(RSD,n=11)为0.8%~2.8%,加标回收率为90%~107%。将实验方法对海绵钯实际样品的测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)进行对比,二者基本一致。  相似文献   

18.
为了提高分析效率和降低分析成本,保证分析人员的身体健康,选择一种分析时间较短、试剂毒性较小、易操作的矿石中金测定方法尤为重要。样品采用王水溶解后,在分液漏斗中,选择试剂毒性较小、价格便宜的乙酸乙酯定量萃取,萃取液直接导入配备有机进样系统的电感耦合等离子体原子发射光谱仪(ICP-AES),选择Au I 242.795nm为分析谱线,对矿石中金进行测定,从而建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定矿石中金的方法。采用萃取分离法消除基体元素及共存元素的干扰。通过对萃取酸度、萃取剂、萃取方法、仪器工作条件、分析谱线等条件试验,确定了最优的实验条件。金的质量浓度在0.10~16.00mg/L范围内与其发射强度呈线性,校准曲线线性相关系数为0.9998。金检出限为0.02mg/L。按照实验方法测定5个矿石金标准物质中金,测定结果的相对标准偏差(RSD,n=10)小于3%;测定值和认定值比较吻合。方法可用于金质量分数在0.25~38.0g/t之间的矿样检测,单个样品的检测时间约4h,可用于批量检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号